

Why this Project?

- Dense pack insulation of unvented roofs common in cold-climate retrofits
 - Moisture risks (see BSI-043 "Don't Be Dense— Cellulose and Dense-Pack Insulation")
 - Violates I-codes (see IRC § R806.4)
 - "Ridge rot"—localized problems (SIPS same problem)

Why this Project?

- Unvented roofs <u>without</u> spray/board foams could reduce costs and increase market penetration...
 IF moisture damage risks are addressed
- Retrofit opportunities (existing uninsulated living space at roof line, without removing finishes)

A NESEA BE15 Net Zero Summit: Unvented Roof Research © buildingscience.com

Experimental Design

- Seven roof bays (east-west pairs) in test garage attic in Chicago, IL (5A) area
- 72 F/50% RH interior conditions through winter: stressing assemblies to failure

NESEA BE15 Net Zero Summit: Unvented Roof Research © buildingscience.com

	Experimental Design							
Dropped Sheathing Dropped Sheathing								
1 Cor A	1-Vented 2-Top Vent 3-Top Vent 4-Top Vent 5-Top Vent 6-Diffusion 7-Unvented Compact Roof Cathedral- Assembly Cellulose Cellulose Fiberglass Fiberglass Fiberglass							
#	ŧ	Name			Venting	Insulation	Interior	
	1 Vented 2 Top Vent Cathedral-Cellulose 3 Top Vent Cathedralized-Cellulose 4 Top Vent Cathedralized-FG 5 Top Vent Cathedral-FG 6 Diffusion Vent Cellulose			Vent space (2")	Fiberglass	Gypsum Bd		
				Cedar Breather (~½")	Cellulose	Gypsum Bd		
				Cedar Breather (~½")	Cellulose	Open		
				Cedar Breather (~½")	Fiberglass	Open		
				Cedar Breather (~½")	Fiberglass	Gypsum Bd		
				Diffusion Vent	Cellulose	Gypsum Bd		
	7 Unvented Cellulose			None	Cellulose	Gypsum Bd		
		NESE	A BE15 Net Zero	o Sum	mit: Unvented Roof Re	search © bi	uildingscience.com	

Monitoring Result Takeaways					
Vented roof=great performance—even @50% RH!					
 Unvented cellulose assembly driven to failure (high RHs, high sheathing MCs) 					
 Cellulose + diffusion vent <u>helps</u>, but not enough 					
 Top venting not enough to save roofs in: Zone 5A climate, 50% RH interior With a small (~1/2" vent space) With OSB sheathing 					
 In top vent roofs, fiberglass roof much worse than cellulose 					
12 NESEA BE15 Net Zero Summit: Unvented Roof Research © buildingscience.com					

Disassembly Takeaways

- Results consistent with monitoring data
- Sheathing stained but not punky/structural damage
- Damage concentrated/severe at ridge
- Fiberglass sheathing & framing: extensive damage & staining, possible mold growth
- Cellulose sheathing: some delamination, adhesions, and rusty fasteners—not as bad
- Cellulose did not settle over one winter
- Fiberglass batts leave lots of air leakage paths

NESEA BE15 Net Zero Summit: Unvented Roof Research © buildingscience.com

Experimental Conclusions

- No roof except for "control" vented roof showed "safe" performance in Zone 5A @ 50% RH
- Cellulose roofs generally showed lower MCs than fiberglass roofs, less damage to structure
- "Top vent" configuration not effective
 - OSB too restrictive for diffusion drying, even with outward thermal gradient? (part of the time)
 - Ventilation space too small?
- Diffusion vent allowed greater drying than conventional unvented, but still higher MCs than generally considered safe

NESEA BE15 Net Zero Summit: Unvented Roof Research © buildingscience.com

