Building Science

Ventilation
Lapse Rate
Figure 11.1: Building with no internal separations with opening at the bottom (Adapted from G.O. Handegord, 1998)
Figure 11.2: Building with no internal separations with opening at the top (Adapted from G.O. Handegord, 1998)
Figure 11.3: Building with no internal separations with openings at top and bottom (Adapted from G.O. Handegord, 1998)
Figure 11.4: Basic two storey house with vented attic
(Adapted from G.O. Handegord, 1998)
Figure 11.8: Stack effect pressures in high rise office building
(Adapted from G.O. Handegord, 1998)
Figure 11.9: Multi-storey building with floor spaces isolated from vertical shafts (Adapted from G.O. Handegord, 1998)
Figure 11.12: Apartment building with tighter apartment entry doors (Adapted from G.O. Handegord, 1998)
Reduced Individual Unit Stack Effect
Build Tight - Ventilate Right
Build Tight - Ventilate Right

How Tight?
What’s Right?
Air Barrier Metrics

Material \(0.02 \text{l/(s-m2) @ 75 Pa}\)
Assembly \(0.20 \text{l/(s-m2) @ 75 Pa}\)
Enclosure \(2.00 \text{l/(s-m2) @ 75 Pa}\)

- \(0.35 \text{ cfm/ft2 @ 50 Pa}\)
- \(0.25 \text{ cfm/ft2 @ 50 Pa}\)
- \(0.15 \text{ cfm/ft2 @ 50 Pa}\)
Getting rid of big holes 3 ach@50
Getting rid of smaller holes 1.5 ach@50
Getting German 0.6 ach@50
As Tight as Possible - with -
Balanced Ventilation
Distribution
Source Control - Spot exhaust ventilation
 Filtration
 Material selection
Energy Recovery
Flexible connection for vibration and sound control

Outside air duct

Motorized damper

Outside air filter

Air handler

Return air

Dehumidifier

Pressure relief grille to "bleed" pressure field from floor cavity

Additional sound and vibration control can be achieved with HVAC equipment supported independent of wall structure

Short return plenum ("sleeve")

Air handler filter

Full height louvered closet door for access, and for a return air pathway to the air handler and dehumidifier

Condensate overflow pan
Pressure relief grille to "bleed" pressure field from floor cavity

Motorized damper

Flexible connection for vibration and sound control

Expandable filter slot

Full height louvered closet door for access and to supply air for dehumidification

Air handler

Dehumidifier

Condensate overflow pan
Grille located high in wall on bedroom side to avoid blockage by furniture.

Cavity is sealed tight, drywall glued to studs and plates on both sides.

Grille located low in wall on hallway side.
Move cabinets farther apart

Hood wider than cook top and extended outboard past head space

Move hood up to provide headroom

Interlocked make-up air
Building Science Corporation

Return air
Dehumidifier
Supply air

Outside air
Exhaust air
Exhaust air

Bath
Kitchen

Interlocked kitchen hood make-up air
Motorized damper — typically closed (connected to fire control system)

Smoke and hot gas vent
(3 1/2% of shaft or 3 ft² per elevator car)

Constant airflow regulator

Exhaust from elevator shaft
Ventilation Rates Are Based on Odor Control
Ventilation Rates Are Based on Odor Control
Health Science Basis for Ventilation Rates is Extremely Limited
Ventilation Rates Are Based on Odor Control
Health Science Basis for Ventilation Rates is Extremely Limited
Almost Nothing Cited Applies to Housing
Ventilation Rates Are Based on Odor Control
Health Science Basis for Ventilation Rates is Extremely Limited
Almost Nothing Cited Applies to Housing
The Applicable Studies Focus on Dampness
Figure 1: Minimum ventilating rate history.
Figure 2: Odor acceptance.
House

2,000 ft²
3 bedrooms
8 ft. ceiling
Volume: 16,000 ft³

.35 ach 93 cfm
.30 ach 80 cfm
.25 ach 67 cfm
.20 ach 53 cfm
.15 ach 40 cfm
House

- 2,000 ft²
- 3 bedrooms
- 8 ft. ceiling
- Volume: 16,000 ft³

Ventilation Rates

.35 ach	93 cfm	62 - 73	5 cfm/person	20 cfm
.30 ach	80 cfm	62 - 89	10 cfm/person	40 cfm
.25 ach	67 cfm		15 cfm/person	60 cfm
.20 ach	53 cfm		.35 ach	90 cfm
.15 ach	40 cfm	62.2 - 2010	7.5 cfm/person	50 cfm
			+ 0.01	
		62.2 - 2013	7.5 cfm/person	90 cfm
			+ 0.03	
Office

Occupant Density

15/1000 ft2 (67 ft2/person)
15 cfm/person

5/1000 ft2 (200 ft2/person)
17 cfm/person

Correctional Facility Cell

Occupant Density

20/1000 ft2 (48 ft2/person)
10 cfm/person

62.1 – 2007
C.P. Yaglou

Harvard School of Public Health
1936
1955

150 ft³ ➔ 20 cfm/person
300 ft³ ➔ 12 cfm/person
C.P. Yaglou

Harvard School of Public Health
1936
1955

150 ft3 ➡ 20 cfm/person 18.75 ft2 106 occupants

300 ft3 ➡ 12 cfm/person 37.5 ft2 53 occupants

Experiment

470 ft3 ➡ 59 ft2

200 ft3 ➡ 25 ft2

100 ft3 ➡ 12 ft2
Aubin, D., Won, D.Y., Schleibinger, H., 2010
Formaldehyde sample concentration versus PFT measured outside air exchange rate over the test day.
Table 1. Summary of the air changes rates measured during the winter 2009-10 season in Quebec City

<table>
<thead>
<tr>
<th>Method</th>
<th>ACH (h⁻¹)</th>
<th>ACH standard deviation (h⁻¹)</th>
<th>number of measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF₆ tracer decay</td>
<td>0.27</td>
<td>0.12</td>
<td>77</td>
</tr>
<tr>
<td>perfluorocarbon tracer</td>
<td>0.32</td>
<td>0.22</td>
<td>37</td>
</tr>
<tr>
<td>blower door at 50 Pa</td>
<td>4.16</td>
<td>2.64</td>
<td>63</td>
</tr>
</tbody>
</table>