Low-Energy Buildings
Intro and Retrofits
John Straube

www.buildingscience.com

What Do We Want To Do?
Safe
Healthy
Comfortable
Durable
Affordable
Environmentally Responsible

Existing US Housing

• Total Housing Units in 2001 (millions):
 Single-Family Homes 73.7
 Apartments (all buildings) 26.5
 Mobile Homes 6.8
 Constructed since 2001 10

Approx Existing Units: 115 million units

1. Energy Information Administration, Residential Energy Consumption Survey, 2001 data: www.eia.doe.gov/emeu/recs
2. EIA, Annual Energy Review, 2001 data: www.eia.doe.gov/emeu/ear

Existing Housing Stock

Age of US Housing Stock (all unit types)

Number of Housing Units (thousands)

Source: US Census Bureau, Annual Housing Survey; http://www.census.gov/hhes/www/housing/sahs/sahs.html

www.buildingscience.com
How Old and New Houses Use Energy

Residential, single family
1. Comfortable, durable, healthy, safe
2. Insulate wall, roof basement, airtight
3. Limit window-to-wall ratio (WWR) to <30%
4. Control ventilation, use energy recovery ventilation
5. Upgrade windows (control SHGC and R-value)
6. Use efficient lighting, right-sized
7. Use efficient appliances
8. Use efficient heating and domestic hotwater equip.
9. Consider source of energy
10. Add renewables to push toward zero

Joe's attempts

Building Science
Metro Community College
January 27-28, 2011

© buildingscience.com
2 of 15
The Whole Building Approach

- Performance Issues driving Retrofit:
 - Comfort
 - More utility
 - Health concerns
 - Durability / repair needs
 - Operating Costs
 - Energy Efficiency & Environment

Retrofit: How to reduce energy?

- Changing mechanical systems is least invasive
 - Lifespan is moderate, say (20 yrs)
 - 10% eff improvement = 10% operating savings = easy
- Lighting and ventilation
 - Change is easy at any time
 - Lighting and controls payback quickly
- Enclosures
 - Windows last 25-50 yrs
 - Insulation last 100+ yrs
 - Cladding lasts 35-200+ years
- MUST have clear idea of enclosure upgrades before deciding on mechanical!
Mechanical Retrofit

- After enclosure upgrade
 - Much smaller and quieter systems can be chosen
- Air-based can be replaced with hydronic
- Steam-based can be replaced hotwater
- E.g. Low-temperature (more efficient) systems can be used
- For ventilations load add HRV
- Variable speed fans and CO₂ controls

Enclosure Retrofit

- Important target for most houses
 - Airtightness
 - Windows
 - Insulation
 - Roof
 - Walls
 - Basement
 - Slabs
- Prioritize by Ease and Impact

Deep Retrofit

Simple upgrades have great paybacks but have little impact
- Small upgrades very cost effective, but small (10-25% reductions)

Mid-range upgrades (15-50%)
- usually quite expensive per energy saved

Deep retrofits (>50%) secure buildings future
- Cost a lot, save a lot.
- But … allow for new styles, repair/replace, more use, etc.
- Leap frog current housing
Basements

- Easy to retrofit and improve from the interior
- Ceiling height is the big restriction for slab solutions
My retrofit

Sump pit basin in corner

Cap break = peel and stick
Above grade walls

- **Interior retrofit** limits improvements to airtightness, rain control, thermal bridge
- **Exterior retrofit** allows excellent improvements and increased durability
- Windows should be done at the same time! Risky
- Installation cost $200+/ so get good windows, eg vinyl triple glazed for $30/sf
Standard Alternate: 4” PIC= R26

Windows

- Important choice!
- Need better rain control
- Improved R-value of course
 - Triple-glazing becoming affordable
Fully Ventilated Attics

• Can re-roof whenever, with whatever
• Deal with moisture, then add insulation
 • Rain leaks, air leaks
• If possible, keep ventilated attic
 • Inspect ceiling plane, plug all holes with caulking and foam
 • Consider 1” of spray foam air barrier
 • Blow in minimum R60 cellulose, R75-R100 sensible
Conditioned Attics

- Needs a good new roof
 - Top quality underlayment needed
- Unvented roofs best for complex shapes
 - Air sealing is critical
- Venting if you can easily achieve this
 - Ensure real venting!

Sloped Wood Roofs

- Usually require re-roofing and structural repair
- Deal with moisture, then add insulation
- If possible, keep ventilated attic
 - Inspect ceiling plane, plug all holes with caulking and foam
 - Consider 1” of spray foam air barrier
 - Blow in minimum R60 cellulose.
- If cathedral, insulate AND airtighten
 - Insulation on exterior is a benefit
 - Airtighten
Conditioned attics

- Continuity of the air barrier is maintained at the roof to wall connection by the sprayed polyurethane foam.
- The air barrier provides interior plane of air tightness.
- R65, note air barrier continuity.

Mechanicals

- Definitely add mechanical ventilation.
- Heat recovery now or later.
- Remove and replace oil burners.
- Natural gas is cheap and low carbon.
 - Even if it is only cheap for 10 yrs, NG pays.
- If you don’t have natural gas:
 - Electricity via heat pumps.
 - Heat via biomass boilers.
40 Watts, 70 cfm HRV/ERV
30-50% duty cycle
Note: short duct runs