Performance in the Commercial Sector 1980-2010

The long-term impact of codes and engineering practice

David Baylon
Objectives

• Describe the commercial building performance in the PNW
 • Buildings built over ~50 years
 • Sampled at random using various sampling approaches
 • Compared to historic data
 • Focus on four building types
 • Assess current energy performance trends

• Performance based on EUI in Kbtu/sf
 • Conditioned floor area
 • Site energy based on complete utility bills

• Describe performance goals of the WA State Energy Code
 • Legislative mandate, 2009
 • Progress to date in the performance estimates

• Propose programs to significantly improve performance
Databases

• CBSA 2008 (2014 buildings, 1188 EUIs):
 • Developed from a series of commercial building audits from 1987 to 2008
 • About 9 separate stratified random samples
 • Sampled from various geographic areas across the regions.
 • Large new construction sample (2006-2007)
 • Complex sample designs make any weighting scheme very problematic
 • Utility energy use collected on 60% of the sample from 2008-9 utility records

• CBSA 2014 (1380 buildings, 593 EUIs):
 • A sample commercial buildings as available in 2012.
 • Sample corrupted by complexity and significant recruiting difficulties
 • Characteristics survey designed to be consistent with CBSA 2008
 • Utility energy use collected on about 43% of the sample
Comparison Datasets

• 2003 and 2012 CBECS:
 • National summary in two major data collection efforts,
 • About 5000 buildings each sample
 • Summaries mapped to CBSA building types.

• 1985 CAP Audits (~1700 buildings--Office, Retail, Groceries, Schools)
 • Sample of convenience drawn from utility sponsored audits
 • Database not available, data summaries from 1988
 • Energy bills and EUIs calculated for 1984-1985
EUI Summary Development

• Combined CBSA samples with all available data
• Reviewed EUI information to assess the validity of the data entered
 • Buildings with modeled energy use removed (about 45% of the samples)
 • Building types reset to a single definition across all samples
• Sample weights and climates ignored (over 80% in Climate “4C”)
• Building type based on “use” when the audit was conducted
 • Updated in older samples with a phone survey
• Buildings categorized by vintage of initial occupancy
 • 2005 on is used as the modern building sample
 • Vintage cohorts in decade bins from 1980
 • Treated as stratified sample by building type and vintage.
• No weightings applied
CBSAs Building Type Sample Sizes

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Audits</th>
<th>EUI sample</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly</td>
<td>177</td>
<td>84</td>
<td>47</td>
</tr>
<tr>
<td>College</td>
<td>119</td>
<td>22</td>
<td>17</td>
</tr>
<tr>
<td>Education (K-12)</td>
<td>343</td>
<td>161</td>
<td>47</td>
</tr>
<tr>
<td>Grocery</td>
<td>289</td>
<td>155</td>
<td>54</td>
</tr>
<tr>
<td>Other Health</td>
<td>217</td>
<td>137</td>
<td>63</td>
</tr>
<tr>
<td>Hospital</td>
<td>131</td>
<td>45</td>
<td>32</td>
</tr>
<tr>
<td>Institution</td>
<td>134</td>
<td>75</td>
<td>56</td>
</tr>
<tr>
<td>Office</td>
<td>533</td>
<td>342</td>
<td>64</td>
</tr>
<tr>
<td>Other</td>
<td>149</td>
<td>74</td>
<td>50</td>
</tr>
<tr>
<td>Lodging</td>
<td>173</td>
<td>100</td>
<td>57</td>
</tr>
<tr>
<td>Restaurant/Bar</td>
<td>296</td>
<td>140</td>
<td>47</td>
</tr>
<tr>
<td>Retail</td>
<td>521</td>
<td>287</td>
<td>55</td>
</tr>
<tr>
<td>Warehouse</td>
<td>292</td>
<td>172</td>
<td>59</td>
</tr>
<tr>
<td>Total</td>
<td>3374</td>
<td>1794</td>
<td>53</td>
</tr>
</tbody>
</table>
Comparison of EUI Averages

Distribution of EUIs by Vintage Years
...and Restaurants

Distribution of EUI by Vintage Year

<table>
<thead>
<tr>
<th>Vintage Year</th>
<th>Total EUI (Kbtu/SF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre 1980</td>
<td></td>
</tr>
<tr>
<td>1980-1989</td>
<td></td>
</tr>
<tr>
<td>1990-1999</td>
<td></td>
</tr>
<tr>
<td>2000+</td>
<td></td>
</tr>
</tbody>
</table>
Energy Use Trends

• In some building types comparisons across buildings are less meaningful
 • Process loads depend on occupancy not on building construction
 • Hospitals/Labs
 • Warehouse becomes manufacturing
 • Restaurants: EUI dominated by food prep not building characteristics
• Master metered and district steam
 • Colleges/Universities
• Diverse categories with building that are not comparable
 • Assembly and Other: Catch all categories with very diverse building types
EUI analysis

• Building type “case studies”: Office, Retail/Grocery, Schools
 • About 55% of the buildings in the sample
 • About 60% of the total conditioned area

• Benchmarks
 • CBECS (2003, 2012):
 • Nationwide sample, almost 5000 buildings each survey
 • Traceable sample design and weights
 • BPA (CAP), SCL (~1985 Audits)
 • Region-wide audits with EUIs
 • Most comprehensive survey of 1980s baseline
 • Most building types represented, compiled from secondary sources
 • Original data not available
 • Energy code requirements (lighting power)
 • WSEC, 1986-2006
 • OSEC, 1989-2000
Determinants of EUI

• For most building types: new buildings like old buildings
• Size?
 • Overall size doesn’t matter for EUI comparison
 • In the target buildings the EUI relation to size has an $R^2<0.02$
• LPD Improvement?
 • Utility programs over 30 years have reduced the LPD comparably with Codes
 • Balanced by other building characteristics
 • Increased ventilation,
 • Simultaneous heating and cooling (especially VAV)
• Heat loss rates, Reduced UA
 • 30 to 50 percent reduction in envelope heat loss rate
 • Little evidence of an impact on EUIs in most building types
• Sloppy engineering,
 • Oversized and expensive systems,
 • Consistent whining about someone else’s issues.
Building Types

- Office
- Retail/Grocery
- Schools (K-12)
Office

- Similar HVAC systems across the sector
- EUIs uncorrelated to building size ($R^2<0.02$)
- Similar lighting throughout the sector
 - Substantial lighting change outs over time (T12 to T8)
 - Consistent LPD in all vintages
 - LPDs will be further reduced by LEDs
- Heat loss rate (UA/sf) reduced almost 50% from the pre 1980 buildings
 - Mostly in the first decade of code enforcement
- About an 8% site energy reduction from historic averages (pre 1980) in the 2005+ buildings
Office EUIs, 1980 to 2010

Distribution of EUI by Vintage Year
Office LPDs, 1980-2010

Distribution of LPD by Vintage Year

- 1985 Audits
- 1989 WSEC
- 2006 WSEC

Interior LPD (W/SF)
Office: Heat Loss Rate (UA/sf)

Distribution of Heat Loss Rate by Vintage Year

excludes outside values
• Changes with the advent of Big Box stores.
 • Dominated by RTUs in all size ranges
 • Grocery (refrigeration) removed as much as possible for “Retail” Classification

• Retail includes dry goods retail as well as “super stores” which appeared mostly since 2000.

• Grocery: Food Store with Deli
 • Comparable to historic definitions

• Grocery EUIs are more than double retail even with the expanded definition

• Lighting retrofit and modernization typical in across this sector
 • Groceries and retail are comparable but presented separately
 • Consistent pattern across the sector and across vintages

• Lighting power in modern buildings influenced by increasing LEDs

• Retail/Grocery: Heat loss reduced by over 50% between 1980 and present
 • Most of the reduction was between 1980 and the mid 1990s.
Retail EUIs, 1980-2010

Distribution of EUI by Vintage Year

Total EUI (Kbtu/SF)

CBEC2003 CBEC2012 1985 Audits
Retail LPDs, 1980-2010

Distribution of LPD by Vintage Year

- 1985 Audits
- 1986 OSEC
- 2006 WSEC

Interior LPD (W/SF)
Retail: Heat Loss Rate (UA/sf)

Distribution of Heat Loss Rate by Vintage Year

- Pre 1980
- 1980-1989
- 1990-1999
- 2000+

excludes outside values
Grocery EUIs, 1980-2010

Distribution of EUI by Vintage Year

excludes outside values
Grocery LPDs, 1980-2010
Grocery: Heat Loss Rate (UA/sf)

Distribution of Heat Loss Rate by Vintage Year

excludes outside values
School (K-12)

- Consistent improvement until 2005
 - Advent of cooling in HVAC design
 - More summer programs
- Overall a 25% reduction from historic averages in the 2005+ building
- Lighting upgraded modern standards over time
 - Consistent target of utility and public retrofit programs
 - Lighting power cut in half from historic averages in all vintages
- Small “improvements” beyond lighting
 - Increased ventilation
 - Better insulation and glazing
 - Reduced WWR especially in early vintages
 - Lighting control
- Heat loss rates reduced by 60% since 1980.
School (K-12) EUIs, 1980-2010

Distribution of EUI by Vintage Year

- Pre-1980
- 1980-1989
- 1990-1999
- 2000-2004
- 2005+

- 2003 CBECS
- 2012 CBECS
- 1985 Audits

Total EUI (Kbtu/SF)

0 50 100 150
School (K-12) LPDs, 1980-2010

Distribution of LPD by Vintage Year

- 1985 Audits
- 1989 OSEC
- 2006 WSEC

Box plots showing the distribution of interior LPDs by vintage year from 1980 to 2010.
School (K-12) Heat Loss Rates (UA/sf)

Distribution of Heat Loss Rate by Vintage Year

excludes outside values
Commercial Sector Results

- Reduced LPD by a factor of 2 since 1985 across building types.
- Improved Building Envelope Components by 50%
- Improved Controls
 - Lighting
 - HVAC scheduling
- Stable energy use across buildings despite improvements
 - Reduced mechanical system (HVAC) efficiency
 - Careless applications of ventilation standards
 - Oversized equipment
 - Simultaneous heating and cooling
 - Large quantities of outdoor air beyond ventilation requirements (pressurization)
- Minimal impact on energy use from 30 years of energy codes and utility programs
- No real impact from jawboning in the Architecture and Engineering professions
Washington State Performance Goals (2009)

- Designed to help achieve carbon reduction agreements
 - Energy reduction of 70% over 2006 code by the 2031 code cycle
 - Legislative mandate to code writing agency
 - Delivers a near net zero building stock
- This analysis uses the 2005+ sample as a baseline
- Some code initiatives since 2011
 - DOAS
 - Zone definition
 - Equipment sizing initiative
 - 25% reduction in LPD (with the advent of LEDs)
 - Building leakage testing
 - Back sliding on building shell
- Probably a reduction of 25% to date
Performance Goals for 2031 (WSEC)

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Base</th>
<th>70% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KBTU/sf</td>
<td>KBTU/sf</td>
</tr>
<tr>
<td>Education</td>
<td>67</td>
<td>20</td>
</tr>
<tr>
<td>Other Health</td>
<td>89</td>
<td>27</td>
</tr>
<tr>
<td>Institution</td>
<td>79</td>
<td>24</td>
</tr>
<tr>
<td>Office</td>
<td>80</td>
<td>24</td>
</tr>
<tr>
<td>Lodging</td>
<td>86</td>
<td>26</td>
</tr>
<tr>
<td>Retail</td>
<td>86</td>
<td>26</td>
</tr>
<tr>
<td>Grocery</td>
<td>260</td>
<td>80</td>
</tr>
<tr>
<td>Warehouse</td>
<td>23</td>
<td>7</td>
</tr>
</tbody>
</table>
Outcome Code targets

- Major improvements in building performance is required
- Primary target should be the HVAC system
 - Eliminate simultaneous heating and cooling (VAV)
 - Improve zone separations
 - Reduce substantially building pressurization with outdoor air
 - Size equipment to reflect the calculated loads (believe your calcs)
 - Separate required ventilation air from heating and cooling delivery (DOAS)
 - Heat recovery, demand control
- Reduce lighting 30% from 2015 WSEC code
 - LED provides a path for this goal
- Improve envelope
 - Decrease allowable envelope leakage (.25 CFM/sf)
 - Decrease component heat loss by 30%
 - Improve window performance
- 60% to 70% reduction over the 2005+ cohort
 - Roughly equivalent to WSEC legislative goals for 2031
Outcome Based Program (utilities):

• Set an operating EUI target and base the incentives on this target.
 • Track EUI performance over time
• Set the target consistent with Energy code goals
 • Low enough so you get good engineering design
 • About 25 KBTU/sf/yr or about 7 kWh/sf/yr
 • Schools with partial occupancy periods about 16 KBTU/sf/yr or about 5 kWh/sf/yr
 • Develop custom targets for building types with specific process loads or occupancy loads
 • Restaurants
 • Hospitals
 • Assembly (Casinos, Churches, Community Centers)
 • Etc.
• Incentives based on performance after full occupancy and sufficient billing history
Outcome Based Program (code)

• Code based performance codes can be developed based on utility experience
 • Performance modeling inadequate by itself
 • Engineered gaming typical
 • EUI performance requirement would “focus the mind”

• Develop public “benchmarking” for new buildings
 • Public tracking of building performance
 • Key code metrics such as building size and equipment type

• Ongoing code development focused on design to achieve performance goals.
Questions,
Comments
Other Slides
System Comparison (KCHA)
Is it possible? Yes

- Engineering the mechanical systems for efficiency reduces the predicted EUI by a factor of three:
 - 27 Kbtu/sf/yr for KCHA Office building
 - 22 Kbtu/sf/yr for RFM office building
 - 29 Kbtu/sf/yr for Issaquah fire station
 - 14 Kbtu/sf/yr for Westside school