Unvented Roofs Without Spray Foam: The Rest of the Story
August 14, 2020 · 3:00 pm

Presenter:
Kohta Ueno (Building Science Corporation)

Kohta Ueno
August 14, 2020

Unvented Roofs Without Spray Foam:
The Rest of the Story
Background

Ventilated Attics—Best Choice

- Roof sheathing dries to ventilated attic-moisture safe
- Interior moisture (air leaks) ventilated away in winter
- Air sealing at ceiling critical for best performance
 - (e.g., spray foam air barrier, detail with sealant)
Then Why Unvented Roofs?

- Living space built into roof
- Vented cathedral assemblies—often poor performance
- Complicated rooflines, hip geometries—how to vent?
- Unworkable air barrier at ceiling line
- Blown-in rain (coastal)
- Hurricane tear-off
- HVAC in vented attic

Unvented Roofs & HVAC Placement

- Ducts in unconditioned attic = energy losses
 - Industry reluctant to move ducts out of attic
 - Ice dam issues due to duct losses
- Solution: bring ducts into conditioned space
- Unvented/conditioned attic—keeps ductwork in conditioned space, duct leak issues eliminated
Fibrous Insulation Unvented Roofs

- Dense pack insulation of unvented roofs common in cold-climate retrofits
 - Moisture risks (see BSI-043 “Don't Be Dense—Cellulose and Dense-Pack Insulation”)—2 in 10 failure?
 - Violates I-codes (see IRC § R806.4/R806.5)
 - “Ridge rot”—localized problems (SIPS same problem)

Fibrous Insulation Unvented Roofs

- The BS* + Beer Show: Unvented Roofs and Fluffy Insulation (with Bill Hulstrunk/NatureTech), May 2020
- Moisture buffering from cellulose storage
- Critical role of density
- https://www.youtube.com/watch?v=xZInpQYdsuM&t=1551s
Why Unvented + Fibrous Risky?

- Different than walls?
- Moisture risks at sheathing
 - Interior-sourced air leakage
 - Vapor contributing too?
 - Zero-perm exterior ("wrong side perfect vapor barrier")
 - Night sky radiation cooling
 - Stack effect in winter
 - "Ridge rot" (thermal and moisture buoyancy)

Why Unvented + Loose Fill Risky?

- Risk reduced by:
 - Airtightness of ceiling
 - Dense insulations that suppress airflow
 - Solar drive
 - But white roofs, shading
 - Lower interior RH (winter)
 - Why many of them work?
 - Lower permeance interior
 - Assumes good airtightness—vapor retarder not bypassed

- Moisture accumulation: what gets in vs. gets out
Spray Foam/Exterior Insulation Roofs

- 2006 IRC: R806.4 Unvented attic assemblies
- Minimum R-value of “air impermeable insulation”
 - Actually ratio of R-values (BSI-100 Hybrid Assemblies)
- Nail base needed with rigid foam on roof deck

Why Fibrous Fill Unvented Roofs?

- Unvented roofs without spray/board foams could reduce costs and increase market penetration…
 IF moisture damage risks are addressed
- Retrofit opportunities (existing uninsulated living space at roof line, without removing finishes)
Previous Building America Research

- Chicago (CZ 5A):
 - One winter, 50% RH
 - Unvented roofs-high risk
 - Cellulose lower risk than FG batt
 - Vented compact roof (chute) safe-but poor air leakage

- Houston/Orlando (CZ 2A):
 - 2 attics, multiple seasons
 - Diffusion vents allow greater drying, avoid moisture problems
Diffusion Vent Prototype (Orlando-Tile)

- 200+ perms diffusion vent
- Air barrier closed

Houston/Orlando Results

- Diffusion vent avoids wintertime ridge accumulation problems (ridge peak RHs/MCs)
- No failures at low interior RH, bigger difference at higher RH (interior humidification)
- Airtightness disappointing in some cases-no SPF
“Ridge Rot” and Moisture Buoyancy

Houston and Jacksonville (CZ 2A) 2001
Moisture Buoyancy

- Moisture concentrated at highest point in conditioned attic (ridge)
- Not a simple one-dimensional problem
- Not a straight-up air leakage problem
- Problem with open-cell spray foam (ocSPF) unvented roofs (high RHs in attic)-many climates
 - But not ccSPF—lower vapor permeance
- Concentration of interior-sourced moisture
- Moist air is lower density (“lighter”) than dry air
- Others: “system in equilibrium has same dewpoint in connected air space”

“Ping Pong” Water

- See BSI-016: Ping Pong Water and The Chemical Engineer
“Ping Pong” Water

- See BSI-016: Ping Pong Water and The Chemical Engineer

- “Gas separation process similar to pressure swing adsorption”
- Solar-powered moisture concentration machine
Orlando Decommissioning

- Temperature and dewpoint stratification directly measured
- 90%+ RH near ridge
- System is not in equilibrium
Test Hut Approach & Construction

Test Hut Experimental Approach

- Climate Zone 5A test hut
- Eight north-south roof bays; guard bays
- ±R-50 (14-7/8” framing, 2012 IECC)
- Test variables (changed year-to-year):
 - Vapor retarder: variable perm vs. fixed perm, various permeance curves
 - Diffusion vent at ridge: full size, none, “small,” or “tight”
 - Fiberglass vs. cellulose
 - “Control” comparison § R806.4 spray foam + fibrous
- Varying interior boundary conditions
 - Winter 1: “Normal” interior conditions
 - Winter 2: Elevated RH (50% constant)
 - Winter 3: Air leakage into rafter bays
Test Hut Construction

- Flash and blow bays (ccSPF shown)
 - ccSPF completes air barrier between bays, wiring holes
 - Insulation netted & blown

- Interior air barrier & vapor retarder membrane
- Adhesive spray + double tape seal (double-sided tape + housewrap tape) plus mechanical fasteners
Test Hut Construction

- Instrumentation completion

Test Hut Construction

- ccSPF in guard bays and walls
Test Hut Construction

- Fibrous insulation installed

Test Hut Construction

- Interior air/vapor control installed
Experimental Approach: Diffusion Vent

- ~6 in. opening (fits under typical ridge cap)
- Dörken Delta-Foxx membrane
 - 214 perms dry cup, 550 perms wet cup

Research Findings
Year 1 Findings (“Normal” Conditions)

- Non-diffusion vent roofs worst; high moisture levels at ridge
- Roofs with diffusion vent & variable-perm vapor retarder safest
- Viitanen mold index values below risk thresholds (3.0 MI); meets ASHRAE Standard 160
- Visible settling of insulation (when cutting new ridge openings from above)
- Summertime inward drive at fixed-perm VR roofs
- Eliminated non-diffusion vent roofs for Year 2 (added “small” & “tight” DVs)

Roof Insulation Settling (Fiberglass)

- Insulation settling noted during diffusion vent retrofit
- Fiberglass roof shown above
Settling along entire roof length only occurred on north side.

Roofs left as-is for Winter 2: realistic settling of insulation? Also, damage to instruments when retrofitting insulation.
Inward vapor drive does matter—we were just measuring in the wrong location!
“Small” and “Tight” Diffusion Vents

- “Small” DV = ~2 inches
- “Tight” DV = 25 perm

Year 2 Findings (50% RH Constant)

- Interior at 50% RH creates much more challenging conditions: many pushing edge of risk
- Many MCs over 20% to 30%, sustained high RH
- Mold Index #s remain below 3.0
- Mold growth occurred on framing & sheathing
- “Tight” diffusion vent did not work acceptably
- Code-compliant ccSPF roof acceptable
- Repacked insulation after disassembly; filling all voids
- Replaced all ridge sensors (data failures)
Summer 2 Ridge Disassembly Work
• Fiberglass: staining, rundown, some mold spotting

Summer 2 Ridge Disassembly Work
• Cellulose: worst mold, settling (greater at north)
Year 3 Setup & Findings (Air Injection)

- Early winter 50% RH, no air leak
- February onward-add air leak
- Air injection system
 - Interior-to-interior leak
 - Very small air leak, 0.5 CFM per bay
 - Comparable to very airtight construction
- Before air injection: much drier than Year 2
 - Repacking insulation suppresses convection?
- Air injection: severe spike in sheathing MC
 - Localized to injection site
 - Disassembly in summer: no visible damage

Air Injection System

North side roof

0.5 CFM air injection rate
Disassembly

No indication of moisture issues (mold, staining, packy insulation)

Miscellaneous Measurements
Air Leakage Testing

- Duct Blaster™ attached to exhaust opening
- Pressurization & depressurization
- ~50 CFM 50 (0.02 CFM 50/sf enclosure)
- Sliding door seal effect on airtightness

Air Leakage Testing: Infrared w. ΔP

- Air leakage at 3-way intersection
- At guard bay, not test bay
Air Leakage Testing During Disassembly

- Depressurized to -75 Pascals
- No detectable air leakage
- No indication of tape seam failure

Water Leakage Testing

- Insulation removed from interior
- -75 Pascal depressurization, 10 minutes water spraying each side
- No sign of water leakage
Density Measurements

- Insulation weighed, density calc
- Average 1.5 PCF (fiberglass) & 4.0 PCF (cellulose)
- Higher density @ FG ridge

<table>
<thead>
<tr>
<th>Roof</th>
<th>Total Lbs</th>
<th>Cubic Ft</th>
<th>PCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 FG-VB-DV</td>
<td>5.8</td>
<td>4.6</td>
<td>1.3</td>
</tr>
<tr>
<td>2 FG-SVR-DV</td>
<td>6.2</td>
<td>4.6</td>
<td>1.3</td>
</tr>
<tr>
<td>3 FG-VB-nDV (Low)</td>
<td>6.6</td>
<td>4.6</td>
<td>1.4</td>
</tr>
<tr>
<td>3 FG-VB-nDV (Hi)</td>
<td>5.0</td>
<td>2.3</td>
<td>2.2</td>
</tr>
<tr>
<td>4 FG-SVR-MD</td>
<td>6.4</td>
<td>4.6</td>
<td>1.4</td>
</tr>
<tr>
<td>5 Cell-VB-nDV (Low)</td>
<td>19.2</td>
<td>4.6</td>
<td>4.1</td>
</tr>
<tr>
<td>5 Cell-VB-nDV (Hi)</td>
<td>10.0</td>
<td>2.3</td>
<td>4.3</td>
</tr>
<tr>
<td>6 Cell-SVR-nDV</td>
<td>10.6</td>
<td>2.3</td>
<td>4.6</td>
</tr>
<tr>
<td>7 Cell-SVR-DV</td>
<td>8.6</td>
<td>2.3</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Data Results (Fiberglass Roofs)
Instrumentation Design: Fibrous Insulation

Notes:
- "MF Sheathing High" is at top edge of sheathing at diffusion vents, or equivalent location in son-DV roofs
- Wafer and RHT at ridge are directly under ridge

Sensor Key:
- Temperature
- Relative humidity/temperature
- Moisture content/temperature
- Moisture content block

Typical Unvented Bay
- Asphalt shingles

Notes:
- "MF Sheathing High" is at top edge of sheathing at diffusion vents, or equivalent location in son-DV roofs
- Wafer and RHT at ridge are directly under ridge

Sensor Key:
- Temperature
- Relative humidity/temperature
- Moisture content/temperature
- Moisture content block
Instrumentation Design: Fibrous Insulation

Typical Unvented Bay
- Asphalt shingles
- Self-adhered membrane
- OSB/5/8" ZIP roof panel
- Cavity insulation (dense pack cellulose or blown fiberglass)
- Interior vapor control layer (fixed or variable perm membrane)

Notes
- "M2F Sheathing High" is at top edge of sheathing at diffusion vent, or equivalent location in non-DV roofs
- Wafer and RHT at ridge are directly under ridge

Sensor Key:
- Temperature
- Relative humidity
- Moisture content

NESEA BE20: Unvented Roofs Without Spray
Fiberglass Roofs: Ridge RH 24 hr Average

- 24 hr. averaging for readability
- Winter 1 compares DV vs. non-DV
- Winter 2 wetter than Winter 1
- Winter 3 much drier than Winter 2

<table>
<thead>
<tr>
<th>Roof Short Name</th>
<th>Winter 1</th>
<th>Winter 2</th>
<th>Winter 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 FG-VB-DV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 FG-SVR-DV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 FG-tVR-DV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 FG-SVR-sDV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fiberglass Roofs: Ridge Wafers

- Winter 1 Roof 3 & Roof 4 no DV
- Winter 1 vs Winter 2 (50% RH)
- Winter 3 also 50% RH—but low moisture
 - And wafer sensor replaced

<table>
<thead>
<tr>
<th>Roof Short Name</th>
<th>Winter 1</th>
<th>Winter 2</th>
<th>Winter 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 FG-VB-DV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 FG-SVR-DV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 FG-tVR-DV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 FG-SVR-sDV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fiberglass Roofs: N Sheathing MCs

- Winter 1 DV roofs vs. non-DV roofs
- Much higher MCs in Winter 2 (50% RH)
- Winter 3 drier “trajectory” (same 50% RH)
- After air injection: MCs increase
- 30-40% MC @ lower & mid sheathings

Fiberglass Roofs: Inward Drive Sensors

- South side wafer sensors
- Summer 2018/2019: Roofs 1 worst (fixed VB)
- All below 40-45% MC condensation level
Data Results (Cellulose Roofs)

- 50%+ MC unrealistic: condensation, borate migration
- Winter 3 much drier than Winter 2
- **Roof 8** (hybrid) condensation-range MCs?
 - Not replaced between Winters 2/3

<table>
<thead>
<tr>
<th>Roof Short Name</th>
<th>Winter 1</th>
<th>Winter 2</th>
<th>Winter 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5Cell-tVR-DV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Cell-SVR-sDV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7Cell-SVR-DV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8ccSPF-Cell</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cellulose Roofs: N Sheathing MCs

- North sheathing MCs
- Upper: condensation & borate migration
- Winter 3 starts out drier than Winter 2
- Air injection: rise in MCs low & mid
- Peak MCs lower than fiberglass: storage

<table>
<thead>
<tr>
<th>Roof Short Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Cell-tVR-DV</td>
</tr>
<tr>
<td>6 Cell-SVR-sDV</td>
</tr>
<tr>
<td>7 Cell-SVR-DV</td>
</tr>
<tr>
<td>8 ccSPF-Cell</td>
</tr>
</tbody>
</table>

Cellulose Roofs: Inward Drives

- Inward drive wafer, south
- All well below 15% MC (safe)
Hybrid Roofs (ccSPF & cellulose)

Rising RH Conditions @ Ridge

- Sensor at sheathing showed safe behavior
- Interface (ccSPF to cellulose) likely condensing surface
- Winter 1: excursions to 90-95% RH
- Winters 2 & 3 (50% RH): 95-100% RH all winter
- No visible issues from interior (cellulose storage)
Conclusions and Recommendations

Recommendations and Further Work

- Unvented fibrous insulation roofs can work, **BUT**
 - Ensure complete packing of insulation/density
 - Still vulnerable to small (0.5 CFM) air leaks
- Mold found after Winter 2, despite mold index < 3.0
 - Vulnerability to moisture damage at ridge
- Difficult to recommend for widespread use and acceptance in building codes
 - High indoor RHs more likely w. tighter construction and high occupant density/multifamily
- Retrofit solution for failing assemblies?
 - Demolition + spray foam not possible?
 - No place in code to allow
Foam-free Unvented Roof Options

- Fibrous + continuous exterior insulation outside air barrier, per § R806.5
 - Mineral fiber, wood fiber board, etc.
- Ventilated cavity outboard of vapor-permeable air/water control membrane

Recommendations and Further Work

- If implementing unvented fibrous insulation roofs
 - Keep interior RH low for life of building
 - Airtightness of interior air/vapor control layer
 - Variable-perm vapor retarder (allows downward drying)
 - Large 300 perm diffusion vent recommended
 - Fibrous insulation without voids or empty cavities
 - Light colored roofs & shading increase risks
- Future work?
 - Moisture risks demonstrated; not sure if additional research useful
 - “Story and a Half Geometry” (Cape Cod short slope)
Story and a Half (Cape Cod Short Slope)

- Possible application to retrofitting “short slope” of kneewall attic geometry
- Eliminates “chute,” possible to retrofit longer runs

Higher R-value in limited cavity
- Not proven by this research, but this is “lower half of roof” geometry (low risk portion)
- Rafter bay has “full-size diffusion vent” to vented attic above
- Common practice in weatherization NE/Midwest
- State code change proposals in process
Questions?

Kohta Ueno
kohta [at] buildingscience [dot] com

Presentation will be available at:
https://buildingscience.com/past-events