Unvented/Cathedralized Roofs
- Insulation at roof deck, rather than attic floor
 - Brings HVAC ductwork/equipment into conditioned space
 - Can improve airtightness (ceiling plane vs. roof)
 - Wind driven rain, hurricane roof tear-off
- Moisture risks with unvented roofs (vs. vented)
 - Condensation of interior moisture at roof sheathing
 - Code-compliant (IRC § R806.4) roofs—“air impermeable insulation” (spray foam/SPF, exterior insulation)
- Current research: air permeable insulation, CZ 2A
 - Lower cost, environmental impacts of SPF
 - Houston and Orlando test houses
 - Can moisture risk be managed?

Why Unvented + Fibrous Risky?
- Different than walls?
- Moisture risks at sheathing
 - Interior-sourced air leakage
 - Vapor contributing too?
- Zero-perm exterior (“wrong side perfect vapor barrier”)
- Night sky radiation cooling
- Stack effect in winter
2000’s Cathedralized Roofs-TX & FL

- Houston climate (CZ 2A) had moisture at ridge
- Concentrated only at ridge—rest of roof OK
- Similar problems in Jacksonville FL (CZ 2A)
- No interior air/vapor control (not practical)
- Possible solution: allowing release of moisture at ridge?

Test Site & Instrumentation Setup

Unvented Roof Test Houses

- Houston: asphalt shingle, #30 paper
 - Unoccupied model, humidified in winter 3 of 3
- Orlando: concrete tile, self-adhered membrane
 - Occupied by family of 4, 2 winters of data

Unvented Roof Test Houses-Insulation

- Houston: adhered fiberglass, R-38/RSI 6.7
- Orlando: netted/blown fiberglass R-38/RSI 6.7
- Vapor open insulation: 120 perm-in. or 170 ng/(Pa·s·m)); no interior vapor control layer
Monitoring of Two Unvented Roofs with Air-Permeable Insulation in CZ 2A

Diffusion Vent (Houston)

- 200+ perms diffusion vent

Diffusion Vent (Orlando-Tile)

Roof Instrumentation (Houston)

- Unvented (membrane) control vs. diffusion vent experimental
- Ridge packages
- Hip packages
- “Downhill” sensors
- Interior T/RH

Roof Instrumentation

- Temperature, relative humidity (RH), wood moisture content (MC)
- “Wafer” sensors
Air Leakage Testing

- Guarded testing: some attics tight, others noticeably leaky
- Depressurization w. infrared
- Air leakage occurs at roof-wall connections, not field of roof

Houston Attic Conditions (Summer)

- Temperature tracks interior main space T
 - Warmer summer, cooler winter (ΔT 5-7 F/3-4 C)
- Temperature high-low stratification
- Dewpoint shows diurnal adsorption/desorption from sheathing, dewpoint stratification

Results: Houston (Asphalt Shingle)

Houston Unvented Peak Conditions

- Strong seasonal swing in moisture levels
- Wet in winter, dries out in summer
- Interior humidification→major effect, high risk
MCs only risky in 3rd humidified winter, drier than UV
- Ridge RH shows minimal seasonal swing → coupled to exterior conditions
- Humidified winter ~40-65% RH interior attic

Diffusion vent wetter in summer, but well within safe range
- Wintertime diffusion vent prevents accumulation

RHs all have peaks 95-100%; diffusion vent roofs higher RHs in summer
- Wafer sensor shows long-term accumulation
- UVR1 & DVH5 wafer wettest outliers

Results: Orlando (Concrete Tile)
Orlando Attic Conditions (Summer)
- Dewpoint diurnal cycling
- Highest dewpoints consistently at “high” locations
- Interior DP higher than exterior DP at peaks

Orlando Unvented Peak Conditions
- Very high RHs and MCs first winter (construction moisture); missing data after drywalling
- Second winter—100% RH peaks, but sheathing MCs not as concerning

Orlando Diffusion Vent Peak Conditions
- Diffusion vent: lower MCs, RH peaks
- “Smear” RH data at ridge vs. unvented

Orlando UVR vs. DVR Comparison
- Again, wafer and ridge RH patterns show safer behavior with diffusion vent, less accumulation
Orlando Ridge RH and Wafer Box Plots

- Unvented roof (UVR1) outlier, 100% RH; 35% MC
- Diffusion vent roofs higher RHs in summer
- Wafer sensor shows long-term accumulation
- DVH2, RW1, RW2 wetter than other DVs

Orlando Roof Shading Patterns

- Higher RH areas in shade (DVH2, RW1, RW2)

Decommissioning & Disassembly
Houston Hip Diffusion Vent

- Monitored results showed low drying—closer to unvented behavior vs. diffusion vent
- Limited drying available at 2” hole “diffusion ports”
- Covered up by asphalt shingles
- Shingles cut back-retrofit

Orlando Roof Peak Conditions

- Spotting on netting near ridge, ~4 ft./1.2 m down
- Worst issues at unvented (not diffusion vent):
 - Spotting on truss vertical member/king post
 - Spotting on upper T/RH sensor jacket, not lower
 - Water stains on ceiling drywall under ridge
- First winter construction moisture condensation

Orlando Attic Vertical Measurements

- Handheld T/RH probe
- Late afternoon June 2016
- Temperature and dewpoint differences w. height

Conclusions & Recommendations
Houston/Orlando Results

- Diffusion vent avoids wintertime ridge accumulation problems (ridge peak RHs/MCs)
- No failures at low interior RH, bigger difference at higher RH (interior humidification)
- Airtightness disappointing in some cases—no SPF

Questions?

Kohta Ueno
kohta [at] buildingscience [dot] com

Project Partners/Sponsors: Cosella Dörken, David Weekley Homes, DuPont Building Innovations, Johns Manville, and Owens Corning

Document Resources

- Building Science Digest 149: Unvented Roof Assemblies for All Climates
 http://buildingscience.com/documents/digests/bsd-149-unvented-roof-assemblies-for-all-climates
- Building Science Insight 043: Don’t Be Dense—Cellulose and Dense-Pack Insulation
- Building Science Insight 088: Venting Vapor
- Building America Report 1511: Field Testing of an Unvented Roof with Fibrous Insulation, Tiles, and Vapor Diffusion Venting
 http://buildingscience.com/documents/building-america-reports/ba-1511-field-testing-unvented-roof-fibrous-insulation-tiles-and
- Building America Report 1409: Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates
 http://buildingscience.com/documents/building-america-reports/ba-1409-field-testing-unvented-roofs-asphalt-shingles-cold-and
- Building America Report 1001: Moisture-Safe Unvented Wood Roof Systems
- Building America Report 1308: Moisture Control for Dense-Packed Roof Assemblies in Cold Climates: Final Measure Guideline