9. GREEN DREAM 2, NEW ORLEANS, LA

9.1 Executive Summary

Gate 2 - Prototype: Green Dream 2, New Orleans, LA

Overview

The Green Dream 2 is a single family home being built by Catholic Charities Operation Helping Hands. The home started construction in June of 2009 and is expected to be completed by the end of December 2009. Project partners include Building Science Corporation (BSC), Louisiana State University Agricultural Center (LSU AgCenter), Portland Community College (PCC) and Operation Helping Hands (OHH). The home will be an example of energy-efficient and flood-recoverable construction in a high wind zone.

Key Results

Though the home is not yet completed, there are several key results to report at this point during construction:

- The home was successfully framed with dimensional lumber floors and walls, wood roof trusses and specified fasteners and connectors to meet the prescriptive code for the Wood Frame Construction Manual, 130 mph , Exposure B.
- All of the windows were installed with proper flashing back to the drainage plane following a window installation demonstration for volunteers.
- Plumbing and mechanical systems were installed in the attic meeting the requirements of the contract drawings and specifications.
- The builder was unable to provide a complete construction budget, making it difficult near the end of the project to ensure the project was completed per drawings and specifications.
- Volunteer labor (combined with hired crews) was utilized to keep the project on schedule.

The Green Dream 2 is being built to meet high performance specifications for both the enclosure and mechanical systems. Once home is complete, BSC will do performance testing to ensure the house performs as designed.

Gate Status

Below is a table indicating that the Green Dream 2 Gate 2 Prototype passes the "Must Meet" Gate Criteria.

Table 9.1: Stage Gate Status Summary

"Must Meet" Gate Criteria	Status	Summary
Source Energy Savings	Pass	The Green Dream 2 design achieves a 57\% source energy savings over the 2009 Building America Benchmark.
Prescriptive-Based Code Approval	Pass	Design complies with 2006 International Residential Code and Wood Frame Construction Manual, 130 mph, Exposure B.
Quality Control Requirements	Pass	Weekly conference calls combined with weekly photos taken by LSU staff allowed BSC to ensure critical details were being implemented on the project. BSC staff also visited the site during critical construction periods. Details will also be verified by a third-party as part of NAHB's Green Building Standard.

"Should Meet" Gate Criteria	Status	Summary
Neutral Cost Target	Fail	The Green Dream 2 does not meet the neutral cost target when the cost of improvements is financed as part of a 30 year mortgage. This annual amortized cost is more than the energy savings of the homes compared to the 2009 Building America Benchmark. Although in this particular project, the homeowner has received cash from the Road Home recovery program and will not be taking out a mortgage.
Quality Control Integration	Pass	The drawing set and specifications include details on air barriers, framing and mechanical and structural coordination. Details in the drawing set were reviewed with the builder and MEP trades at two critical time during the project - first before construction began and second before the trades were to start work.
Gaps Analysis	Pass	Most of the lessons learned in this project were related to designing and detailing framing in a high wind zone to meet prescriptive requirements. Many of the prescriptive requirements prevented the implementation of advanced framing practices. Other lessons learned include cladding attachment in a high wind zone, foundation design and truss design.

Conclusions

When complete, the Green Dream 2 will stand as an example of an energy-efficient home in a high wind zone, built to recover from both flooding and high wind events. From working with a structural engineer provided by LSU, the project team learned that there is currently research being conducted by structural engineers in the Louisiana area in an effort to create design guidelines specific to buildings in high wind and flood zones. These guidelines would address elevated floors and different foundation types including pier construction, which are not covered by the current prescriptive code for high wind construction. It is the hope that with these guidelines, designers would have a better understanding of the various foundation options and be able to design them to meet the project's specific loading requirements.

The high performance enclosure and high efficiency mechanical systems specified for the Green Dream 2 are predicted to save the homeowner $\$ 2,000$ per year in utility bills. Results from performance testing will be reported on and included in the Case Study created after construction is complete.

9.2 Introduction

9.2.1. Project Overview

The Green Dream 2 is a single-family home being built on the site of a hurricane-damaged house that stood for 3 years before being demolished by the city. Staff and students from Portland Community College met the homeowner and his family on a trip to New Orleans and wanted to help them by building a new home; one that would be durable, healthy, comfortable, energy-efficient and affordable. PCC connected the homeowner with Catholic Charities Operation Helping Hands who, in turn, asked BSC and the LSU AgCenter to be a part of the team.

Architects and engineers created the plans and specifications for the 4-bedroom, 2-full bath home on piers. The foundation system is a proprietary system of telescoping concrete piers with wood framed sill beams supporting the floor joists. In order for the home to be flood-recoverable, the insulation for the walls is placed to the outside of the studs, leaving the stud bays open and able to be cleaned after a flooding event. Medium and high-density spray foam is utilized between the floor joists and on the underside of the roof sheathing not only to be part of the thermal envelope but also to provide a critical seal air barrier. The windows allow cross ventilation and have a low solar heat gain coefficient (SHGC = 0.21), decreasing solar gain. All plumbing and mechanical systems are located in the conditioned attic, including supplemental dehumidification, which will control the humidity during the shoulder seasons of spring and fall.

The Green Dream 2 will have fiber cement siding over treated wood furring strips and high wind rated shingles over a fully adhered roofing membrane. See Figure 9.2.1 below.

Figure 9.2.1: Green Dream 2 rendered elevation

The home is scheduled to be completed at the end of December 2009. See the photos below for a series of construction milestones. Additional photos can be seen on the project's blog at the following web address:
www.greendream2.posterous.com

Figure 9.2.2: Concrete piers, treated floor framing and borate treated wall framing

Figure 9.2.4: Roof trusses and treated wall sheathing

Figure 9.2.6: Housewrap

Figure 9.2.3: Roof trusses and treated wall sheathing

Figure 9.2.5: Treated roof sheathing

Figure 9.2.7: Roof shingles and windows

The Green Dream 2 is not only part of the Building America Program, but is also registered in Builders Challenge and in NAHB’s Green Building Standard.

9.2.2. Project Information Summary Sheet

PROJECT SUMMARY	Catholic Charities Operation Helping Hands Company Company Profile
	Operation Helping Hands brings volunteers from across the country together to help rebuild New Orleans by rebuilding homes of elderly, disabled or uninsured homeowners that were severely damaged by Hurricanes Katrina and Rita in 2005.
Contact Information	Paul Cook Operation Helping Hands Archdiocese of New Orleans 3738 Paris Ave
	New Orleans, LA 70122 (504) 324-4318
http://www.ccano.org/operation_helping_hands.htm	

9.2.3. Targets and Goals

The Green Dream 2 was designed to achieve a 57% reduction in source energy relative to the 2009 Building America Benchmark. The design surpasses the goal of achieving a 50\% energy use reduction in hot-humid climates.

Below are specific goals of the project:

- To design a home that meets BSC Building America requirements as well as the needs of the homeowner.
- To use insulation strategies that allow the framing to be cleaned after a flooding event.
- To install supplemental dehumidification with controls both on the unit as well as in the living space.
- To design and install a solar thermal system.
- To frame the house with borate treated lumber.
- To use advanced framing practices where permitted by the Wood Frame Construction Manual.
- To be certified under the following programs:
- Builders Challenge
- NAHB Green Building Standard

Though not all of the goals were achieved, mainly for budgetary reasons, the built home will be an example of how to build in a high wind and flood zone in a hot humid climate.

9.3 Whole-House Performance and Systems Engineering

9.3.1. Energy Analysis Summary

Table 9.2: Estimated Whole House Energy Use for Green Dream 2, New Orleans, LA

ESTIMATED WHOLE HOUSE ENERGY USE		
Source (MMBulyear)	Site (MMBuyyear)	Area + Bsmt (sqti)
127	51	$1944+0$
	\% Electric	No. of Berrooms
	62	4

With the enclosure and mechanical characteristics presented in Table 1.6 and Table 1.7 (below), this plan achieves a performance level of 57% reduction relative to the Building America Benchmark.

9.3.1.1. Parametric Energy Simulations

Figure 9.3.1: Parametric energy simulations for Green Dream 2, New Orleans, LA

9.3.1.2. End-Use Site and Source Energy Summaries

Table 9.3: Summary of End-Use Site-Energy

	Annual Site Energy			
	BA Benchmark EWh		Prototype 1 End-Use	
therms	kWh	therms		
Space Heating	3831	0	1067	0
Space Cooling	11676	0	2655	0
DHW	0	203	0	82
Lighting*	2420		1184	
Appliances + Plug	4527	114	4031	114
OA Ventilation**	65		248	
Total Usage	22518	317	9185	196
Site Generation	0	0	0	0
Net Energy Use	22518	317	9185	196

*Lighting end-use includes both interior and exterior lighting
**This OA Ventilation energy consumption is for fan energy only, space conditioning is included in Space Heating and Cooling

Table 9.4: Summary of End-Use Source-Energy and Savings

			Source Energy Savings	
	Estimated Annual Source Energy		Percent of End-Use	Percent of Total
	BA Benchmark 106 BTU/yr	Prototype 1 106 BTU/yr	Prototype 1 savings	Prototype 1 savings
Space Heating	44	12	72\%	11\%
Space Cooling	134	30	77\%	35\%
DHW	22	9	60\%	5\%
Lighting*	28	14	51\%	5\%
Appliances + Plug	64	59	9\%	2\%
OA Ventilation**	1	3	-282\%	-1\%
Total Usage	293	127	57\%	57\%
Site Generation	0	0		0\%
Net Energy Use	293	127	57\%	57\%

The "Percent of End-Use" columns show how effective the prototype building is at reducing energy
use in each end-use category.
The "Percent of Total" columns show how the energy reduction in each end-use category
contributes to the overall savings.
The Green Dream 2 achieves a 57\% source energy use reduction relative to the 2009 Building America Benchmark.

9.3.2. Discussion

9.3.2.1. Enclosure Design

Table 9.5 (below) summarizes the building enclosure assemblies used for this project.

Table 9.5: Enclosure Specifications

ENCLOSURE

Ceiling

Description -
Insulation -

Walls

Description -

 Insulation -Conditioned attic framed with 2×6 wood trusses 7" open cell medium density (0.8 pcf) spray foam (R-30)

Foundation
 oundation

Description - Wood piles, concrete grade beams, telescoping concrete piers, 2×12 treated
sill beams, 2×10 borate treated floor joists
Insulation - $\quad 21 / 2^{\prime \prime}$ closed cell high density $(2.0 \mathrm{pcf})$ spray foam $(\mathrm{R}-15)$ between floor joists

Windows

Description -

U-value
SHGC -

> Manufacturer -
2×416 " o.c. borate treated wood stud walls
2" foil-faced polyisocyanurate on exterior of studs (R-13)

Insulation - $\quad 21 / 2$ " closed cell high density (2.0 pcf) spray foam (R-15) between floor joists

Single hung, double pane, impact rated, low-E vinyl windows
Showcase Custom Vinyl Windows and Doors

Infiltration

Specification -
Performance test
$2.5 \mathrm{in}^{2}$ leakage area per $100 \mathrm{ft}^{2}$ envelope
Goal of 1590 CFM 50 (4.1 ACH 50) (house not yet tested)

Figure 9.3.2: Green Dream 2 Wall Section

When designing the enclosure for the Green Dream 2, the two driving forces were the need to meet a 50% reduction in source energy use and the desire to have a flood and hurricane recoverable home. Below is a description of how both were achieved in each enclosure component:

- Ceiling - The underside of the roof deck is insulated to R-30 using 7" of open cell medium density (0.8 pcf) spray foam. This increases the home's airtightness and provides a conditioned attic in which to locate the home's mechanical system and distribution, both of which increase the energy use reduction. The spray foam also increases the rigidity of the structure and is not as susceptible to water damage as other types of insulation, making it more hurricane resistant and flood recoverable. This medium-density foam was used in this application because although high density (2.0 PCF) foam was specified, the spray foam contractor was not comfortable with the limited drying of this assembly. The medium density foam was suggested as a compromise; this appears to be a good application for this product. Although the open cell structure would be more vulnerable to flood damage, the elevation of the roof makes this risk very low.
- Walls - The four exterior walls of the house are insulated to R-13 using (1) 2" layer of foil-faced polyisocyanurate rigid insulation on the exterior of the studs. By insulating on the outside of the studs, thermal bridging is decreased, which increases the energy use reduction. Specifically, a conventionally framed R-13 wall would have an overall assembly R value of $\mathrm{R}-8$; this measure, although nominally the same R value, is a 60% increase in R value over conventional construction. And by leaving the stud bays open, if flooded, the cavities can be cleaned without needing to remove and eventually replace the insulation.
- Foundation - The foundation of the Green Dream 2 is a system of concrete grade beams and telescoping concrete piers. The sill beams made up of (3) $2 \times 12 \mathrm{~s}$ support the 2×10 treated wood floor joists. The raised floor is insulated to R-15 through the use of $21 / 2$ " of closed cell high density (2.0 pcf) spray foam installed between the floor joists. Like the spray foam in the attic, this increases the home's airtightness and is more resistant to water damage than other types of insulation.
- Selecting the Foundation - Concrete piers were used on the Green Dream 2 because they were donated. Other options would have been masonry piers or wood piles. Due to the soils on the site, wood piles were specified along with concrete grade beams and the concrete piers. Even with the donation, this system was priced almost double the cost of wood piles alone, which would have met the structural requirements of the site. In future projects, more research should be conducted on foundation options, perhaps leading to a cost savings for both the builder and homeowner. However, the system as designed and installed is indeed quite flood resistant and recoverable. See the photos below.

Figure 9.3.3: Concrete grade beams and piers

Figure 9.3.4: Concrete grade beams and piers

- Windows - The windows specified are single-hung, double pane, impact rated, low-E vinyl windows. The low solar heat gain coefficient ($\mathrm{SHGC}=0.21$) reduces solar gain, decreasing the mechanical system run times during cooling hours, increasing the energy use reduction. The impact rated windows not only protect the home but also allow light into the space during a high wind event.

Figure 9.3.5: Showcase windows NFRC label

Figure 9.3.6: Installed window

9.3.2.2. Mechanical System Design

Table 9.6 (below) summarizes the mechanical systems used by this project.

Table 9.6: Mechanical system specifications

MECHANICAL SYSTEMS
 SPECIFICATIONS

Heating

Description - 15.5 SEER / 9.0 HSPF air source heat pump split system
Manufacturer \& Model -
Comfortmaker FVM4X2400A
Cooling (outdoor unit)
Description - $\quad 15.5$ SEER / 9.0 HSPF air source heat pump split system
Manufacturer \& Model - Comfortmaker C4H424GKC

Cooling (indoor unit)

Description - 15.5 SEER / 9.0 HSPF air source heat pump split system
Manufacturer \& Model - Comfortmaker FVM4X2400A

Domestic Hot Water

Description - 0.82 instantaneous water heater
Manufacturer \& Model - Rinnai

Distribution

$\left.\begin{array}{rr}\text { Description - } & \text { R-6 duct board supply trunk and R-6 flex duct run-outs in conditioned } \\ \text { space, sheet metal supply plenum }\end{array}\right]$ None to outside (5\% or less)

Ventilation

Description - \quad Supply-only system integrated with AHU, 74 CFM 33% Duty Cycle: 10 minutes on; 20 minutes off
Manufacturer \& Model - n/a

Return Pathways

Description - Transfer grilles at bedrooms, central return, dehumidifier return

Dehumidification

Description - Whole House Dehumidifier
Manufacturer \& Model -
Aprilaire 1750

PV System

Description - n/a
Manufacturer \& Model - n/a

Solar Hot Water

Description - n/a
Manufacturer \& Model - n/a

See "2009-04-17 Green Dream 2 Mechanical Systems" in the Appendix of this report for project specifications.

Through BSC's construction administration on another New Orleans project, the team learned that it is best to specify a dehumidistat for the living space as well as a control on
the actual unit. Aprilaire’s Model \#70 Living Space Control will be installed next to the thermostat in this project.

9.3.2.3. Lighting and Miscellaneous Electrical Loads

All compact fluorescent lighting and ENERGY STAR appliances were specified for the Green Dream 2. If installed as specified, these will contribute greatly to the increased energy performance of the house at 5.2% and 4.2% respectively. LED lighting was also purchased for the kitchen of the home.

9.3.2.4. Site-generated Renewable Energy

As described in the targets and goals section of this report, the project team wanted to design and install a solar thermal system for the home. This was given serious consideration for several reasons: first, the non-freezing climate (99.6% design T of 30.6° F) allows the use of a simpler, lower cost integrated collector storage (ICS) system. Second, the house is expected to have high occupancy (3 adults, 5 children), with a high associated domestic hot water load; this measure might have benefits greater than those indicated modeling the house under Benchmark operating conditions. Several options were modeled, and a system design was drawn (see 1.7.3. 2009-04-17 Green Dream 2 Mechanical Systems), incorporating a gas-fired instantaneous water heater with the ICS collector.

Unfortunately, the system was never priced; due to the unknown amount of funds remaining for the homeowner, the system will not be installed. If it had been installed, the system would have increased the energy use reduction by 2.0%. The house is sited with a large roof area facing south, giving the home an ideal orientation should the homeowner choose to install the system in the future.

9.4 Construction Support

9.4.1. Construction Overview

Construction on the Green Dream 2 began in June of 2009 and is expected to be complete at the end of December 2009. Operation Helping Hands has utilized both hired crews and volunteers to build the home. Team members from LSU visit the site weekly to take photos and report back to the entire project team during weekly conference calls. See construction photos below.

Figure 9.4.1: Wood piles and concrete grade beam formwork

Figure 9.4.3: Top plate to wall stud straps

Figure 9.4.2: Wall stud to rim joist straps

Figure 9.4.4: Concrete piers with metal saddles for sill beam

Figure 9.4.5: Self-adhered membrane on top of porch floor joists

Figure 9.4.6: Plumbing below floor joists

9.4.2. Educational Events and Training

The project team has worked together throughout the construction process to make sure the community, other design professionals and people working on the project, both volunteers and hired contractors, are aware of the unique features of the project and learn why they are important in this hot-humid climate. This has been achieved by the following educational tools and events:

- Project Blog - Since the beginning of construction, a project blog has been maintained and sent out to industry partners. The blog documents the construction of the home and points out key features.
- MEP Bid Meeting - A meeting was held with the selected mechanical, electrical and plumbing contractors after the bidding process to review the systems and details and finalize the quoted costs. This meeting was held in the builder's office and attended by team members from LSU and BSC (by phone).
- MEP Pre-Installation Meeting - A meeting was held on $9 / 17 / 09$ at the site of the Green Dream 2 to review final details of each of the systems prior to the contractors working in the home. The meeting was attended by each of the MEP contractors, team members from LSU, BSC and the builder.
- Window Installation Demonstration - Team members from LSU, BSC and the builder held a window installation demonstration at the site of the Green Dream 2 on 9/17/09 for volunteers and design professionals. The demonstration was marketed by LSU and attended by approximately 40 people. BSC created handouts for the audience to follow along as the window was being installed. See SK-03 in the Appendix of this report for the window installation sequence. Team members assisted as volunteers proceeded to install the remaining 15 windows. See photos below of the window installation demonstration.
- Future Tours - Future tours of the home are planned at critical stages of construction, such as after spray foam has been installed and during cladding attachment.

Figure 9.4.7: Audience at window installation demonstration

Figure 9.4.9: Folding and securing housewrap at jambs

Figure 9.4.11: Installed window

Figure 9.4.8: Cut housewrap and bead of caulk at sill

Figure 9.4.10: Installing jamb flashing

Figure 9.4.12: Installing air seal between top of wood sill and back of sill pan

9.4.3. Systems Testing

When complete, the project team will perform the standard battery of performance testing, including overall air infiltration (blower door), duct leakage (total and to exterior), HVAC system static pressure and overall flow, HVAC register flows, room pressurization, and ventilation system flows.

9.4.4. Monitoring

The project team is planning on collecting monthly gas and electricity bills for the Green Dream 2 for roughly a year, at a minimum. The results will then be compared to predictions from the energy models. The project team may also administer the previously developed homeowner survey, for a complete battery of data.

9.5 Project Evaluation

The following sections evaluate the research project results based on the ability to integrate advanced systems with production building practices in prototype homes. References are made to the results from field tests and energy simulations, which are included as an appendix to this report.

9.5.1. Source Energy Savings

Requirement:	Final production home designs must provide targeted whole house source energy efficiency savings based on BA performance analysis procedures and prior stage energy performance measurements.
Conclusion:	Pass

With the enclosure and mechanical characteristics presented in Table 1.6 and Table 1.7, this plan achieves a performance level of 57% reduction relative to the Building America Benchmark.

9.5.2. Prescriptive-based Code Approval

Requirement:	Must meet prescriptive or performance safety, health and building code requirements for new homes.
Conclusion:	Pass

The design of the Green Dream 2 complies with the New Orleans Building Code, the 2006 International Residential Code, the Wood Frame Construction Manual, 130 mph , Exposure B and all zoning bylaws for the City of New Orleans.

9.5.3. Quality Control Requirements

Requirement:	Must define critical design details, construction practices, training, quality assurance, and quality control practices required to successfully implement new systems with production builders and contractors.
Conclusion:	Pass

In order to build a home that is durable, comfortable, energy-efficient and affordable, quality control methods must be in place at the beginning of the project and reviewed with the builder and all other parties involved in the construction. The following is a list of methods either already implemented or planned to be implemented on the Green Dream 2 :

- Weekly conference calls - Starting from the beginning of the project, BSC has held weekly conference calls for all team members. Minutes are created, distributed and used as the agenda for the following week's call. The conference calls and meeting minutes allow the entire team to be up-to-date on the current status of the project. See the Appendix for an example of the Meeting Minutes.
- Weekly photos - Agreed upon at the start of the project, LSU team members go by the site regularly to take photos and post them on the project blog. The photos
are used as a tool on the conference calls to ensure details are being implemented as designed.
- Durability Checklist - A Durability Checklist was developed during design and implemented during the construction process, in order to ensure that critical design details would be implemented, that design intent would be carried out through construction as well as that the finished home would be one that is healthy, durable and energy efficient. Items on the Durability Checklist such as managing both interior and exterior water sources, identifying and creating an interior air barrier as well as preventing pests from entering the home were verified by team members while on site visits and will also be checked by a third party verifier as part of the NAHB's Green Building Standard certification process. See the Appendix for the Durability Checklist.
- Homeowner's Manual - A Homeowner's Manual will be developed to ensure the home will operate as intended. The manual will describe key operational and maintenance measures, describe the lighting and appliances in the home, as well as include the makes and models of all the appliances.

9.5.4. Neutral Cost Target

Requirement:	The incremental annual cost of energy improvements, when financed as part of a 30 year mortgage, should be less than or equal to the annual reduction in utility bill costs relative to the BA Benchmark.
Conclusion:	Fail

The Green Dream 2 fails to achieve a positive cost target with respect to annual mortgage payments. This means that the annual energy savings is lower than the additional annual amortized mortgage cost.

See The Neutral Cost Analysis Worksheet below. The house is expected to spend $\$ 16$ a year compared to the additional amortized mortgage payments. The mortgage is assumed to be a 30 year plan at a rate of 7%.

But note that due to the homeowner paying for the construction with funds from the Road Home program, he will not be taking out a mortgage.

Table 9.7: Green Dream 2 Neutral Cost Analysis

	Annual Electric Energy (Site)			Annual Gas Energy (Site)			
	Benchmark	Builder Standard Practice (Optional)	Prototype House	Benchmark	Builder Standard Practice (Optional)	Prototype House	Annual Utility Bill Reduction vs Benchmark
End Use	(kWh/yr)	(kWh/yr)	(kWh/yr)	(therms/yr)	(therms/yr)	(therms/yr)	(\$/yr)
Space Heating	3830.75		1067	0		0	\$359
Space Cooling	11675.5		2655	0		0	\$1,173
DHW	0		0	203		82	\$145
Lighting	2420		1184				\$161
Appliances and MELs	4527		4031	114		114	\$64
Ventilation	65		248				(\$24)
Total Usage	22518.25	0	9185	317	0	196	\$1,879
Site Generation	0	0	50	0	0	0	\$7
Net Energy Use	22518.25	0	9135	317	0	196	\$1,885
Added Annual Mortgage Cost w/o Site Gen.							\$1,901
Net Cash Flow to Consumer w/o Site Gen.							(\$23)
Added Annual Mortgage Cost with Site Gen.							\$1,901
Net Cash Flow to Consumer with Site Gen.							(\$16)

9.5.5. Quality Control Integration

Requirement:	Health, Safety, Durability, Comfort, and Energy related QA, QC, training, and commissioning requirements should be integrated within construction documents, contracts and BA team scopes of work.
Conclusion:	Pass

The Green Dream 2 contract documents have critical construction details included that ensure the home's health, safety, durability, comfort and energy-efficiency. Below are examples of details included in the drawing set:

- Framing plans integrated with the mechanical layout to identify critical locations where different building trades need to coordinate
- Wall framing elevations identifying stud spacing, headers, number of jack and king studs at windows and doors and high wind required connectors
- Air sealing details identifying responsibilities of different trades
- Window and door details and installation sequences
- Window and door schedules and specifications
- Duct sealing details
- Electrical box air sealing details

9.5.6. Gaps Analysis

Requirement:	Should include prototype house gaps analysis, lessons learned, and evaluation of major technical and market barriers to achieving the targeted performance level.
Conclusion:	Pass

Though the Green Dream 2 is still under construction, issues have been identified that have either been resolved in the field or will need further research and design to resolve for future projects.

- Foundation Design - Though the system built is durable and designed for this specific site, other more cost effective systems should be researched for future projects.
- Treated Lumber - Treated lumber was used on the Green Dream 2 in order to increase durability of the stick framing in a hot-humid climate, as well as to reduce the risks associated with flooding immersion. Borate treatment was decided on by the project team as the best method of treatment, but was not immediately available for all types of framing members. In the future, a connection should be made with a supplier early in the design process to be more aware of what is available.
- Truss Design - Just as with the lumber, a connection should also be made early on in the design process with a truss designer. Changes made to the truss design by the manufacturer resulted in a time consuming redesign of the mechanical layout in the attic.
- Formwork Removal - Some of the formwork for the concrete grade beams is still in the ground. Since the grade beams are 2' deep, the volunteers had a difficult time removing the 2 x formwork. Unfortunately, some of the wood is buried and is likely to remain in the ground.
- Budget - In future projects, the project team must insist that the builder complete a budget. An incomplete budget in the case of the Green Dream 2 has led to being unaware of what items have or have not been included in the pricing, and not knowing whether funds are available to complete the project as designed.
- Solar Thermal - The solar thermal system for the Green Dream 2 was designed and specified but never priced and subsequently will not be installed. In the future, the project team should aid the builder in working with local suppliers and installers to obtain competitive pricing.
- Furring Strip and Cladding Attachment - The high wind codes to not address cladding attachment but defer to manufacturer's installation instructions. However, manufacturers do not address how to install their cladding over rigid insulation or over furring strips. In order to have more widespread implementation of our exterior wall assembly, structural load calculations need to be completed by industry partners and/or consultants, and accepted by local and national codes.
- Project Management - In order to continue working with Operation Helping Hands, a project manager needs to be assigned to each project and be the contact person who is aware of the schedule, budget, volunteer availability, goals and is on-site during construction. Fortunately, this has been the case on the Green

Dream 2. However, it will need to be the case on all projects in order to increase the builder's ability to build high performance homes.

9.6 Conclusions/Remarks

The Green Dream 2 will be an example of a high performance home in a hot-humid climate; a high performance home that is flood and hurricane resistant and recoverable. While not all of the goals of the project were achieved, significant lessons were learned that would help guide future projects with Operation Helping Hands and in the New Orleans area.

Once the home is complete, the project team will visit the site before the homeowner moves in in order to test the home's performance, review the Homeowner's Manual and answer any questions the builder or homeowner may have on the operation and maintenance of the home.

9.7 Appendices

9.7.1. 2009-03-04 Green Dream 2 PCC Intern Plan
9.7.2. 2009-04-01 Green Dream 2 3D Image
9.7.3. 2009-04-17 Green Dream 2 Mechanical Systems
9.7.4. 2009-05-12 Green Dream 2 Permit Set
9.7.5. 2009-06-09 Green Dream 2 Additional Piles SK-01
9.7.6. 2009-08-06 Green Dream 2 Framing SK-02
9.7.7. 2009-09-17 Green Dream 2 Window Install Demo
9.7.8. 2009-09-17 Green Dream 2 Window Sequence SK-03
9.7.9. 2009-09-28 Green Dream 2 MEP Checklist
9.7.10. 2009-09-30 Green Dream 2 Meeting Minutes Example
9.7.11. 2009-09-30 Green Dream 2 Revised Mechanical Plan SK-04
9.7.12. 2009-10-22 Green Dream 2 Durability Checklist
9.7.13. 2009-10-22 Green Dream 2 Site Visit Reports

Catholic Charities Brown House Work Plan for PCC Interns

- Scope of Work:
- Interiors Budget:
- Finishes (flooring, wall \& ceiling paint, trim)
- Interior Doors \& Hardware
- Kitchen Equipment (range, refrigerator, sink, dishwasher)
- Kitchen \& Bath Cabinets
- Kitchen \& Bath Countertops
- Bath Accessories (mirror, bench \& hooks, towel bars, toilet paper holder)
- Light Fixtures
- Plumbing Fixtures
- Clothes Washer \& Dryer
- Closet Shelving
- Furniture
- Window Treatments
- Coordination of Interior Budget Items with Homeowner
- Drawing Set:
- Interior Elevations
- Interior Finish, Door, Fixture, Equipment \& Accessory Schedules
- Exterior Elevations
- Window Schedule
- Exterior Details (railings, panel between piers, landscape plan - if time allows)
- Work Schedule:
- Interior Elevations:
- April to draw elevations and post on BSC FTP site for Katie to review
- Katie to redline drawings and go over changes with April
- April to make changes and format elevations on Plot sheet
- Interiors Budget \& Item Selections:
- Nikki to price interior budget items
- Nikki to put together package to review with Homeowner
- CAD \& Item Selection Coordination:
- April and Nikki to work on calling out interior items on interior elevations
- April and Nikki to work on finish, door, fixture, equipment, and accessory schedules
- April to format schedules on Plot sheet and post updated interior elevations and schedules on BSC FTP site for Katie to review
- Katie to redline drawings and go over changes with April
- April to make changes
- Exterior Elevations:
- Same process as "Interior Elevations" above

Catholic Charities Operation Helping Hands Paul Cook O'Neal Bourgeois Bonnie Evans	LSU Claudette Reichel Paul LaGrange
Portland Community College Spencer Hinkle Shannon Baird April Golden Nikki Jeffers	

Re: Green Dream 2 Mechanical Systems Specifications

The following document is a set of preliminary specifications for the mechanical systems for Green Dream 2, which includes systems for heating, ventilation, and cooling (HVAC), dehumidification, and domestic hot water. It also has requirements for the installation of the HVAC system, and minimum Building America performance levels that are associated with the mechanical systems.

1. Equipment Specifications: HVAC

- Heating and Cooling: Heating and cooling to be provided by an air source heat pump split system. The system will have 2 tons ($24,000 \mathrm{Btu} /$ hour) nominal capacity with minimum efficiency levels of 8.5 HSPF (Heating Season Performance Factor) and 14 SEER (Seasonal Energy Efficiency Ratio).

BSC is considering an upgrade to a 9 HSPF/16 SEER unit; we have run simulations that indicate that if this upgrade can be obtained for a reasonable price, it is quite cost-effective. Ideally, this would be priced as an add alternate, and then compared with the associated energy savings in order to make the decision.

In either case, this system must use R410a refrigerant.

- Supplemental Dehumidification: Supplemental dehumidification to be provided by an Aprilaire 1750, General Aire 1300, or equal (unit with built-in dehumidistat). System is to be installed supplying dehumidified air to the supply plenum, and drawing air from the main space. A normally closed motorized damper (e.g. Aprilaire 6508) to be installed in supply duct of dehumidifier. Installation to be completed as per "Aprilaire 1700 Safety and Installation Instructions," see Figure 1, right-hand figure.
- Filtration: Minimum MERV 13 filtration to be provided.
- Thermostat: Thermostat shall be a programmable heat pump thermostat.
- Ventilation: Ventilation is to be provided by a central fan integrated ventilation system (duct to return side of air handler with motorized damper and manual damper), controlled by an Aprilaire 8126 Ventilation Control System kit
(includes controller and motorized damper) or equal (e.g., AirCycler FR-V). Note that if Aprilaire 1750 dehumidifier is used, this control is built in to the unit, eliminating the need for the Aprilaire 8126 and AirCycler FR-V.
- Refrigerant-based HVAC systems to be installed per Building Science Primer 051: "Refrigeration System Installation and Startup Procedures, and Air Conditioning Equipment Efficiency" (see http://www.buildingscience.com/ documents/primers/bsp-051-refrigeration-system-installation-and-startup-procedures-and-air-conditioning-equipment-efficiency?full_view=1).

2. Equipment Specifications: Domestic Hot Water

- Domestic Hot Water: Domestic water heating to be provided by a gas-fired instantaneous (tankless) hot water heater with a minimum energy factor (EF) of 0.80 . The unit will be located within conditioned space, and therefore must be a sealed combustion or direct vent unit (draws air for combustion from the exterior, not the interior). Given the high occupancy of this house, the likelihood of simultaneous domestic hot water draws is higher; therefore, a high output (199,000 Btu/hour input) unit is recommended.

Examples of units that meet these requirements are American Water Heater 305 (GT-305-I), Bosch Aquastar (2700ES), Rinnai R75-LSi (REU-VA2528FFUDU), and State 305 (GTS-305-I).

- Solar Hot Water System: An integrated collector storage (ICS) solar hot water system to be installed on the south-facing roof (following the roof pitch angle); our simulations used a Thermal Conversion Technology ProgressivTube PT40 CN collector (41 gallons, 32.1 square feet gross area).
- Solar Hot Water Plumbing: In order to integrate the solar hot water system with the instantaneous (tankless) hot water heater, the required plumbing schematic is shown in Figure 2. Note that several pieces of equipment are required for this system, including a Taco 013-BF3 pump, Watts 1170 mixing valve, 6 gallon electric storage water heater tank, and Amtrol Therm-X-Trol ST-5 expansion tank. These items are also shown and called out in Figure 2.

3. Building America Performance Criteria

BSC Building America Performance Criteria that are relevant to the HVAC system are as follows; these criteria can also be found on the web at http://www.buildingscienceconsulting. com/buildingamerica/targets.htm.

- Whole-house dilution ventilation: a mechanical ventilation system must be installed to be capable of meeting ASHRAE Standard 62.2 which stipulates a ventilation rate of 7.5 CFM per person (counted as the number of bedrooms plus one) plus 0.01 CFM per square foot of floor area. While 62.2 stipulates that operation of the ventilation system is at the occupant's discretion and the Standard is silent regarding whole-house distribution of ventilation air, this Performance Criteria stipulates that the 62.2 ventilation flow rate be delivered at least one-third of the time and that whole-house distribution is required.
- Local exhaust ventilation: Intermittent spot exhaust of 100 CFM must be provided for each kitchen (recirculating cooktop hoods are not permitted). Intermittent spot exhaust of 50 CFM or continuous exhaust of 20 CFM when the
building is occupied must be provided for each room having a toilet, bath, or shower.
- Ventilation intake locations: When a supply-only or balanced ventilation system is used, the intake must go through an outside wall and not the roof (due to proximity to exhaust/vent pollutants, and heated air/VOC's/odors from the roof). Wall intakes should be located at least 10 feet from, and not directly above, any wall exhaust or vent.
- All combustion appliances (except a gas stove, cooktop or oven) in the conditioned space must be sealed combustion. Specifically, any furnace inside conditioned space must be a sealed-combustion $90 \%+$ unit. Any water heater inside conditioned space must be direct- power-vented. Any boiler inside a conditioned space must be sealed combustion.
- All ducts and air handling equipment must be in the conditioned space.
- Total space conditioning system duct leakage must be less than five percent of the total air handling system rated air flow at high speed (nominal 400 CFM per ton) determined by pressurization testing at 25 Pa . Two compliance mechanisms are acceptable: (1) test total duct leakage at finish stage, or (2) test total duct leakage at duct rough-in stage. When more than one air handler exists, each air handling system must individually meet the requirement. If zoning is used, all zone dampers must be open. Manual or motorized outside air ventilation dampers must be closed.
- Local and whole-house mechanical ventilation system airflows must be tested during commissioning of the building.
- Forced air systems that distribute air for heating must be designed to provide balanced airflow to all conditioned spaces and zones (bedrooms, hallways, basements). Balanced airflow is defined as a system that controls inter-zonal air pressure differences when doors are closed to less than 3 Pa using passive transfer grilles, jump ducts, door undercuts or active return ducts or any combination thereof. (see Transfer Grille Detail and Transfer Grille Sizing Chart; see http://www.buildingscience.com/documents/reports/rr-0006-discussion-of-the-use-of-transfer-grilles-to-facilitate-return-air-flow-in-central-return-systems)
- System external static pressure must be within manufacturer specifications (0.5 WIC/125 Pa maximum typical).

2009-04-17 Green Dream 2 Mechanical Systems Specifications V1

Figure 1: Ducted dehumidifier installation instructions from Aprilaire 1700 installation guide (1750 similar)

Figure 2: Tankless Hot Water Heater Application with Solar Preheat and Active Storage

Building Science Corporation

30 Forest Street, Somerville, MA 02143

information consulting bookstore seminars building science.com information

BSP-051: Refrigeration System Installation and Startup Procedures, and Air Conditioning Equipment Efficiency

last updated 2008/ 09/ 09

The performance of the cooling system will be evaluated and assured through a series of measurements including: air flow, pressures, temperatures, humidity levels, and power draw. To get off to the best start possible, the following procedures (or equivalent) should be followed for line set installation and system startup:

1. The refrigerant grade copper line set should not be left open to the atmosphere to collect contaminants. It should be capped off and filled with dry nitrogen.
2. Make sure a filter/ dryer is installed in the liquid line (either factory or field installed). Use bi-directional units for heat pumps.
3. Using a silver/ phosphorus/ copper alloy with between 5% and 15% silver, braze refrigerant line set to the indoor and outdoor units with nitrogen flowing through the lines to eliminate carbon deposit buildup on the inside of the joints which could contaminate the refrigerant and restrict the metering device. (To do this, remove the Schrader valve cores and connect nitrogen bottle to one valve and set pressure regulator to about 2 psi . A small amount of nitrogen will flow out the other Schrader valve.)
4. After brazing the line set to the indoor and outdoor units, visually inspect the quality of the joints (a mirror helps), then reinstall the Schrader valve cores and pressurize the line set and evaporator coil with between 125 to 150 psi of dry nitrogen. Check for leaks.
5. Connect the manifold pressure gauges, micron gauge, and vacuum pump. Release the nitrogen charge and begin evacuation. For faster evacuation, leave the gas ballast valve open on the 2 -stage pump until you reach 1000 microns, then close it.
6. Evacuate the refrigerant lines and evaporator coil to 300 microns or lower (a micron gauge and 2 -stage vacuum pump are required). This should take about 15 minutes for a system that is not contaminated. Valve off and turn off the vacuum pump and wait for at least 10 minutes to make sure the micron gauge reading does not go back up above 700 microns. If it does, re-start the vacuum pump and evacuate for another 15 minutes. Repeat that process until it is successful, assuring that there are no leaks and all moisture and non-condensable particles are removed.
7. With the system evacuated, if the actual line set length is greater than the default length that the manufacturer pre-charged the condenser for, add refrigerant by weight to account for the actual line set length. The manufacturer will specify the weight of refrigerant per foot of line set for different tube diameters, and the manufacturers specification should be used for a mismatched evaporator coil size. The condenser unit comes pre charged for a given line set length (usually between 15 ft and 25 ft). It is easiest to measure and document the line set length at rough-in. One way this can be done is by measuring the waste length from a standard size coil. Refrigerant charge must be adjusted by weight using a digital refrigerant scale with resolution to at least one half ounce.
8. Release the refrigerant charge from the condenser unit into the line set and evaporator coil.
9. If the refrigerant line set length is less than the default length that the manufacturer precharged the condenser for, then subtract refrigerant by weight to account for the actual line set length according to the manufacturers specification. Refrigerant charge must be adjusted by weight using a digital refrigerant scale with resolution to at least one-half ounce.
10. Check the return air filter(s). If it is new, continue to step 11, if it is dirty ($>25 \mathrm{~Pa}$ pressure drop), replace it with a new filter. If a new filter is not available, remove the dirty filter for the purpose of checking system operation.
11. Start the system and run for at least 15 minutes. If indoor and outdoor environmental conditions are favorable, check for proper superheat for capillary tube and accurator systems, and check for proper sub-cooling for TXV (thermal expansion valve) systems. Adjust refrigerant charge as necessary.
12. Check for proper temperature drop across the evaporator coil. Check static pressures in the supply and return plenums. Correct for any airflow problems as necessary.

According to the best engineering data available, the performance loss using a thermal expansion valve (TXV) metering device is about 5% if the refrigerant charge is off by plus or minus 20\%. The performance loss using a fixed metering device (capillary tube, piston or accurator) is about 15% to 20% if the refrigerant charge is off by plus or minus 20%. Therefore, TXV systems are best, however, by following the installation procedure listed above, the refrigerant charge should be within about 5\% every time, limiting the performance loss to about 5\%.

Additional resources:

■ "J ust the facts," Thermal Engineering Company, Toledo, OH
■ "Fundamentals of dehydrating a refrigerant system," Robinair Manufacturing Corp., Montpelier, OH

- "Influence of the expansion device on air-conditioner system performance characteristics under a range of charging conditions," Farzad and O'Neal, ASHRAE Transactions 1993, V. 99, Pt. 1.
- "Soldering and brazing copper tube," Copper Development Association Inc.
- "Split system space cooling refrigerant charge and air flow measurement," California Energy Commission, Contractor's Report, \#P 400-01-014, http:// www.energy.ca.gov/ reports.
\uparrow collapse article
Copyright © 1999-2009 Buil ding Science Corporation | Conditions of Use | Contact Us | Sign-up for Our E-Newsl etter

CATHOLIC CHARITIES OPERATION HELPING HANDS Green Dream 2

5007 CARTIER AVENUE NEW ORLEANS, LOUISIANA HOT-HUMID CLIMATE

DRAWING LIST

A-001
A-101 A-102 A-103
A-104 A-104
A-201 A-201 A-301 A-401
A-501 A-501
A-502 A-502
A-503 A-503 A-504 A-505
A-601 A-701 A-702 M-101

E-101 FIRST FLOOR ELECTRICAL PLAN, NOTES \& DETAILS
TDTP-01 FOUNDATION PLAN \& NOTES
$\begin{array}{ll}\text { TDTP-01 } & \text { FOUNDATION PLAN \& NOTES } \\ \text { TDTP-02 } & \text { FOUNDATION SECTIONS \& NOTES }\end{array}$

PROJECT DESCRIPTION
These plans describe an affordable, energy efficient and durable 1,944 sq. ft. single family home to be built in New Orreans, LA. The home has four bedrooms and two full baths. The drawing set and specifications were developed by Building Science Corporation through the Department of Energy's Building America Program
for Catholic Charities Operation Helping Hands. During project panning for Catholic Charities Operation Helping Hands. During project planning and construction, all efforts should be made to meet the goals of this project. bullding code
These plans comply with the New Orleans Building Code, the 2006 International Residential Code and the Wood Frame Construction Manual, 130 mph
Exposure B. Exposure B.
SQUARE FOOTAGES - Area calculations according to ANSI Z765-2003
First Floor

9. All detalis sectons notes or refernce to other drawings

PRoJECT TYPE PEREENT ENEEGY STAR					
SINCLE HOMES	40%				
:---	:---	:---	:---		
CoMMUNTIES	30%	70.75			

LOCAL EXAUST VENTIATION INTERMTTENT SPOT EXAAUSTOF OF 100 CFM

$$
\begin{array}{|lcc|}
\hline \text { CLIMATE ZONE } & \begin{array}{c}
\text { MAXMMU } \\
\text { UXALUE }
\end{array} & \begin{array}{c}
\text { MAMMUM } \\
\text { SHCCOM }
\end{array} \\
\hline \text { ZONES 1.3 } & 0.40 & 0.55 \\
\hline \text { ZONES 4.8 } & 0.35 & 0.40 \\
\hline
\end{array}
$$

 testing requirements:

 TIESTED.

general construction note

INL Notes

 structural notes.
 tams monter suporifur

ARCHITECTURAL Notes:
ORP EDGE - Provide 1 ORP EDEE ON FLASHING OVER OPENNGS II

tic AcCess - openng 20" $28^{\text {" Min }}$

STAR DMMENIONNAAL INTEIROR AND EXTERIOR STARS S-REFRR To

andralls and guaros

neno
COAT Closets - -(1) ROD AND (1) SHELF MIN. 12 " DEEP MIN

CChanical. electrical. and plumbeng notes.
EXAAUST fans - Vent to exteror
UEE HOOOS. VENTTOEXT

CABbon Monoxde detectors - Locate in Each bedroom.

Product specification

-

${ }_{k}^{k}$

Tape

5

 $\frac{\text { ASSOCALED ARCHIECT: }}{\text { SUSTAINABLE ARCHITECTURE LLC }}$

 S.and
tered Acrineed $N .20200$
Catholic Charities Operation Helping Hands
GREEN DREAM 2
007 Cartier Avenue
New Orleans,
Hot-Humid Climate

ps	5/12/09	PegMt Set
MAPK	DAEE	Descripion
ISSUE:		
PRoLect No:		Green Dreem 2
CAD DWG FILE: DRAWN BY:		Plot La no
		k6
ORAMN St:		${ }_{8 P}$

Notes, Assemblies \& Specifications

Apendix 0.9 .7

(1) $\frac{\text { FRONT }}{\operatorname{scalLE}: 144^{2}=1: 0^{\circ}}$ (WEST) ELEVATION

ppendix 0.9 .7

(2) LEFT SIDE (NORTH) ELEVATION

BUILDING SCIENCE CORPORATION	
30 FOREST STREET SOMERVILLE, MA T: (978) 589-5100 F: (978) 589-5103 www buildingscience.com	
Prooser:	
Catholic Charities Operation Helping Hands GREEN DREAM 2 5007 Cartier Avenue New Orleans, LA Hot-Humid Climate	
	SS 5 /12/0 Preat
	MSUE:
	PouECT No: Green Dream
	A DVE Flle: Plot la no
Scale: As noteo	
	A-202

(5) PORCH FRAMING SECTION

(4) DOUBLE TOP PLATE SPLICE DETAIL

(3) TYPICAL FRAMED CORNER PLAN DETAIL
(2) TYPICAL FRAMED CORNER SECTION \& ELEVATION

(1) TYPICAL FRAMED WALL OPENING ELEVATION

STin esin

A-501

(5) BATHTUB / SHOWER AT EXT. WALL DETAIL

(3) EXTERIOR CORNER PLAN DETAIL
\qquad(1) ENCLOSURE ASSEMBLY

(2) INTERIOR AIR BARRIER PERSPECTIVE

 ASSOCARED ARCHIECT: SUSTAINABLE ARCHITECTURE LLC

Catholic Charities Operation Helping Hands GREEN DREAM 2

5007 Cartier Avenu
New Orleans, LA Hot-Humid Climate

Enclosure Details
sate as vore
A-502

STEP 1

STEP 7

STEP 13 (REVERSE VIEW)

STEP 2

STEP 8 (REVERSE VIEW)

STEP 14
step 3

STEP 15

STEP 10

STEP 16

STEP 5

STEP 1

STEP 17

STEP 6

STEP 12

STEP 18
(2) DOOR INSTALLATION SEQUENCE

(4) SIDE ENTRY, PANTRY \& UTILITY ROOM ELEVATIONS

Appendix 0.9 .7 .4

A-702

1. Ducts Are size for cooling. sel mechanicl speafication for cooling load.

2. AL Ducts to ee selled with mattic and Located in conotroned space

celngs supply register
3. all registers to have adustable turnng vanes ano close-of danper.
F- over door trans fer grule

- THeRnostar sci ERV2 2 super
||1- Motorzed damer
and
manual daneer

return grale douct

14. R410a Refrigerant must be used in ar source heat pump split system
15. EXAUUST CFM- 50 C CFM BATHS AND 100 CFM KITCHEN
16. Motorzzed dampers normally closed.
mechanical specification

Deheminirir
THERMSTAT

2. Design loads | HEATNG LOAD |
| :---: |
| COOLNG LOAD |

3. Duct desisn

(4) MECHANICAL AREA ENLARGED PLAN

$$
\begin{aligned}
& { }^{\text {Gws }}
\end{aligned}
$$

-	10"x6" TRANSFER GRILLE OVER BEDROOM DOOR
	HALLWAY WALL FRAMING WITHIN WALL
	UNDERCUT DOOR ${ }^{3 n}$ FLOOR ASSEMBLY

pendix 0.9 .7

Project:
Date:
Drawing Title:
Drawing File:
Drawing Scale:

Catholic Charities Green Dream 2
2009-06-09
SK-01 Additional Piles on Fdn. Plan
PP_LA NO Brown House.dwg
$3 / 16$ " $=1$ '-0"

Sheet Title:
SK-01

2009-09-17 Green Dream 2 Window Install Demo

Topic:
Date and Time:
Location:
Purpose: Demonstrate how to properly flash and install a window.

Step	Action	Materials Needed
P-1	Measure window rough openings and window frames.	Tape Measure
P-2	Measure distance from back of flange to face of frame. (Will need to build up with shims if deeper than $33 / 4^{\prime \prime}$ and R.O. allows - don't want to smash sill pan).	Tape Measure
P-3	Draw cuts on housewrap with black Sharpie.	Black Sharpie
P-4	Install beveled siding on sill rough opening - slope to exterior. Cut to fit with circular saw. Bead of caulk below siding. Fasten to sill with 2 galv. nails.	Beveled Siding, Galv. Nails, Caulk
1	Cut housewrap along drawn cuts with utility knife.	Utility Knife
2	Staple sill housewrap to beveled siding, do not trim.	Stapler
3	Insert sill pan under cuts in housewrap at jambs. Caulk under sill pan. Staple edges. Trim sill housewrap to back of sill pan.	Sill Pan, Caulk, Stapler, Utility Knife
4	Fold back, staple and trim jamb housewrap. Temporarily tape head housewrap.	Stapler, Utility Knife, 3" Construction Tape
5	Tape sill pan joint with flashing tape (entire pan profile and slightly below sill pan) and tape housewrap cuts with $3^{\prime \prime}$ construction tape applied horizontally.	4" Flashing Tape, 3" Construction Tape
6	Place plastic shims near end of sill, cut to fit, level shims, tape to secure.	EZ Shims, $3^{\prime \prime}$ Construction Tape, Level
7	Install window, nail into a few holes at head and jambs to secure. Shim as required. Insert $1 / 16^{\prime \prime}$ galvanized fender washer under each hole in sill flange. Temporarily tack in place, then fully install once all washers are under flange.	Window, 2" 12 Ga. Galv. Roofing Nails, Shims, $1 / 16^{\prime \prime}$ Galv. Fender Washers
8	Install jamb flashing.	4" Flashing Tape
9	Install head flashing.	4" Flashing Tape
10	Fold head housewrap down and tape both sides of flap.	3" Construction Tape
11	Install low expansion foam on all four sides on interior of window.	Great Stuff Pro Window \& Door
12	Caulk back of sill pan to beveled siding.	Caulk

Need to Purchase / Find in Storage:

Beveled Siding - about 50 linear feet
2" 12 Gauge (Min.) Galvanized Roofing Nails - about 750 nails - roofing nails used are OK
Silicone Caulk - GE Silicone II Window and Door (white) - available at Home Depot - about 5 tubes
EZ Shims - available at Ace Hardware - about 4 packages of 20
1/16" Galvanized Fender Washers - about $1501^{\prime \prime}$ diameter washers - measure window before buying

Donated by Dow:

3" Construction Tape
4" Flashing Tape
Sill Pans
Great Stuff Pro Window \& Door

General Construction Supplies:

Construction Stapler
Tape Measure
Level for 3' Window
Utility Knife
Black Sharpie

	BA-0911: Prototype House Evaluations-Green Dream 2	
Project: Date: Drawing Title: Drawing File: Drawing Scale: COPYRIGHT (C) 2009 BUILDING SCIENCE CORPORATION	Catholic Charities Green Dream 2 2009-09-17 SK-03 Window Installation Sequen Green Dream 2 Window Sequence N.T.S.	Sheet Title: SK-03.dwg SK-03 Appendix D.9.7.8

2009-09-24 Green Dream 2 MEP Checklist - REVISED 2009-09-28

Project \& Location: Green Dream 2-5007 Cartier Ave, New Orleans LA

Purpose of Checklist: To identify recent MEP decisions and address outstanding MEP issues and questions from subcontractors.
Subcontractors: Plumbing: David Rader, Carter \& Sons, (504) 832-5924
Mechanical: Marc Stephens, Stephens \& Co., (504) 828-7373
Electrical: Larry Adams, Ken Layus Electric Inc., (504) 382-7870

Plumbing
Action Item Action By Complete 1 No "Solar Hot Water System" or "Solar Hot Water Plumbing" per "2009- $04-17$ Green Dream 2 Mechanical Systems Specifications." N/A YES / NO 2 PEX water supply lines in attic and down through interior partitions (kitchen sink to come down in exterior wall). Locate ductwork area of work in attic to prevent plumbing and ductwork conflicts. David \& Ed YES / NO 3 Need revised bid including installation of gas tankless hot water heater. David \& Ed YES / NO 4 Do not drill through floor joists for plumbing lines. Hang plumbing 8"-12" below bottom of floor joists - need space to spray foam and install fiber cement protection board. David YES / NO 5 Install one-piece shower and bath modules in bathrooms (rather than a tile enclosure). Install thin profile sheathing on 3 sides of modules and air seal - see attached "2009-09-24 Bathtub and Shower Air Sealing Details." David \& Ed YES / NO 6 Install gas tankless hot water heater per "2009-04-17 Green Dream 2 Mechanical Systems Specifications." David \& Ed YES / NO

	hanical Action Item	Action By	Complete
1	Trusses near air handler were built slightly different than approved prohibiting locating the air handler as shown on the drawings. The truss manufacturer has approved moving the unit to a more central location. Revised unit location and associated ductwork to be shown on SK-04.	Kohta \& Katie	YES / NO
2	Revise system CFM to accommodate 2-ton unit. Show revisions on SK-04.	Kohta \& Katie	YES / NO
3	Daniel to talk to Armin re: running the dehumidifier and air handler at the same time. Show revisions on SK-04.	Daniel \& Katie	YES / NO
4	16 SEER unit. $\$ 1400$ upgrade cost from 14 SEER - $\$ 1000$ manufacturer rebate and $\$ 400$ covered by Entergy. Confirm rebate.	Marc	YES / NO
5	Need revised bid and contract (once we have issued SK-04).	Ed \& Marc	YES / NO
6	Owens Corning QuietR Duct Board OK for supply and return trunks. Supply plenum to be sheet metal. $\$ 1800$ upcharge to use sheet metal supply and return trunks.	Marc	YES / NO

2009-09-24 Green Dream 2 MEP Checklist - REVISED 2009-09-28

7	R-4.2 insulation on all flex duct run-outs and outdoor air intake.	Marc	YES / NO
8	Fan cycling controller not needed if Aprilaire 1750 dehumidifier is installed per "2009-04-17 Green Dream 2 Mechanical Systems Specifications."	Marc	YES / NO
9	No fur down needed in laundry room. Dryer vent to be low on exterior wall.	Marc	YES / NO
10	No fur down needed in back entry. Outdoor air intake to be located in existing fur down area over bathrooms.	Marc	YES / NO

Electrical Action Item		Action By	Complete
1	Sent Larry revised kitchen layout.	N/A	YES / NO
2	Install combination smoke and CO detectors hard-wired, interconnected with battery back-up.	Larry	YES / NO
3	Moved a few outlets during walk-through.	Larry	YES / NO
4	Added front door light and (3) double flood motion lights on center of sides of house (2) and back of house (1).	Larry	YES / NO
5	Install 50 CFM bath exhaust fans - Panasonic FV-05VF1 or approved equal.	Larry	YES / NO
6	Moved electrical meter to front left of house where service comes in.	Larry	YES / NO
7	Install electronic or mechanical off-timer for bath exhaust fans.	Larry	YES / NO
8	Exterior outlet for future wheelchair lift to be 115v/20a.	Larry	YES / NO
9	Run electrical 8" down from top plate; use J-box, then run wiring down partition to outlet. This will help to keep majority of wiring above possible flooding.	Larry	YES / NO

2009-09-30 Green Dream 2 Meeting Minutes

Meeting Topic:	Green Dream 2-5007 Cartier Ave, New Orleans LA
Date and Time:	September $30^{\text {th }}, 2009-3: 00 \mathrm{pm}-4: 00 \mathrm{pm}$ ET
Location:	Conference Call
Attendees:	Katie Gunsch (BSC), Spencer Hinkle (PCC), Steve Picou (LSU),
	Diane Scimeca (LSU), Ed Cannon (CC)
Purpose:	Weekly update.
Attachments:	None.
Project Blog:	www.greendream2.posterous.com.

$$
\text { Agenda Item } \quad \text { Action } \quad \text { Status }
$$

1 - Funding

.1	Homeowner: $\$ 139,250$ (money needs to be put into escrow). UPDATE: Applied for elevation money.	Bonnie \& Paul Cook	OPEN
.2	PCC: $\$ 18,750(\$ 15,500$ to the Browns and $\$ 3,250$ to student travel) PCC still actively fundraising on registry and Facebook? Include furniture.	Spencer \& Nikki	OPEN

2 - Budget
. 1 Overall: \$10k - \$20k more than construction cost.
Construction Cost: \$122,421 (95\% estimate).
Cost does not include:

1) Spray foam in attic and under floor joists $(\$ 12,108)$
2) Appliances (on registry)
3) Bath vanities (to be purchased)
4) Drywall installation (contracted out)
5) Duration shingles $(\$ 4,415.17)$
. 2 Lumber: Bora-Care to be applied to ends of trusses when scaffolding is up. Can be found at PESTOP in Metairie for $\$ 159$ per gallon (need 2).
. 3 MEP: Reviewing new proposal from Stephens \& Co. - \$13,100 - same as original bid. State HERO program (Department of Natural Resources) $\$ 2000$ check to homeowner for meeting Builders Challenge, $\$ 3000$ check to homeowner for meeting Federal Tax Credit level.
. 4 NAHB Green Building Standard: $\$ 500$ registration fee to come out of the budget. The next step will be the inspection after insulation and rough-in.

 Spencer	OPEN
Paul Cook	OPEN
Paul Cook	OPEN
 Paul LaGrange	OPEN

BA-0911: Prototype House Evaluations-Green Dream 2

2009-09-30 Green Dream 2 Meeting Minutes

3a-Donations

.1	Plumbing Fixtures: Send letter to Toto for donation.	Paul Cook	OPEN
.2	Appliances: Spencer has Whirlpool contact. Whirlpool appliances listed on website. Katie asked Spencer to change range and dryer to gas. UPDATE: Still listed as electric on registry.	Spencer	OPEN
.3	DOW: Send letter to DOW for donation.	Paul Cook	OPEN
.4	Countertops: Spencer has a contact that may be able to provide light- weight concrete countertops. UPDATE: Peter Field from PCC to send photos, samples of countertop for Cornelius to review.	Spencer \& Peter	OPEN
.5	Kitchen Light Fixtures: LEDs ordered for kitchen. Sent to Catholic Charities? UPDATE: Ed to check to see if fixtures from Task Lighting arrived.	Ed	OPEN
.6	Paperless Drywall: Catholic Charities can do a smooth ceiling finish. Give 2 weeks notice to get material from GP - $\$ 3,400$.	Paul Cook	OPEN
.7	Garbage Disposal: Spencer to look into donation.		OPEN

$3 b-M a t e r i a l ~ S e l e c t i o n s$

.1	Kitchen: Spencer to send Bonnie links to kitchen fixtures and finishes to show Cornelius.	Spencer	OPEN
.2	Smoke / CO Detectors: Combo units will be used in the ceiling. Diane to see if she can get a few donated to plug in low on the wall.	Diane	OPEN

4 - Schedule

. 1	Dates: 9/22/09 - Plumbing work started. 10/9/09 - HVAC to start. 10/16/09 - Electrical to start (work same time as HVAC). 10/26/09 - Spray foam? Paul LaGrange to verify penetrations before installing spray foam. 10/30/09 - Open house, workshop, demo? 12/12/09 - 12/18/09 - Spencer, Peter and students install cabinets and make concrete countertops for kitchen. 12/21/09 - Complete.	Paul Cook	OPEN
. 2	Figure out two, two-week windows to schedule demos, workshops: 1. After spray foam is installed - end of October. 2. During exterior foam, furring, and siding installation.	Diane \& Claudette	OPEN

BA-0911: Prototype House Evaluations-Green Dream 2

2009-09-30 Green Dream 2 Meeting Minutes

5 - Construction

. 1	Foundation: Sill beam saddles still need galvanized bolts installed. Joe Sproules still needs to do some leveling - cannot do this without bolts. UPDATE: Started installing bolts.	Paul Cook \& Ed	OPEN
. 2	Framing: Final framing items (for volunteers): 1. Install Simpson Strong-Ties. 2. Install blocking and RBC connectors between trusses. 3. Install blocking between floor joists. 4. Install blocking at sheathing seams. Katie to detail: 1. Ice and water shield around porch beams. 2. Floating drywall corners. 3. Truss to interior partition slotted anchor. 4. Blocking between trusses on interior.	Katie \& Ed	OPEN
. 3	Plumbing: Carter \& Sons will repair (and abandon) the broken sewer line at the rear of the property. UPDATE: Installed the Rinnai tankless hot water heater.	Paul Cook	OPEN
. 4	Windows \& Doors: Windows and construction doors installed. Katie to send door options to show Cornelius.	Paul Cook \& Katie	OPEN
. 5	Site Drainage: Katie to check local codes for parking requirements and send sketch showing only paving "tire" portions of driveway. Need to allow site to drain front to back (not to the sides).	Paul Cook \& Katie	OPEN
. 6	Grade beam formwork needs to be removed ASAP. UPDATE: Volunteers to do this.	Ed	OPEN
. 7	Mechanical, electrical and plumbing penetrations to be flashed before foam is installed. Foam to be installed with treated furring strips and 4" heavy duty galvanized screws. UPDATE: www.quickflashproducts.com - possible product.	Ed \& Katie	OPEN
. 8	Electrical: Make sure the pendant lights in kitchen have dimmers. Add garbage disposal to kitchen.	Ed	OPEN

6 - New Business

Please advise Katie Gunsch of Building Science Corporation of any errors or omissions before the next conference call.

NOTE: MECHANICAL EQUIPMENT, MAIN SUPPLY TRUNK \& RUN-OUTS LOCATED IN CONDITIONED ATTIC. ALL REGISTERS AND GRILLES LOCATED IN CEILING. R-4.2 INSULATED RUN-OUTS AND OUTDOOR AIR INTAKE. SUPPLY PLENUM BETWEEN AIR HANDLER AND MAIN SUPPLY TRUNK TO BE SHEET METAL. MAIN SUPPLY AND RETURN TRUNKS TO BE OWENS CORNING QUIET R DUCT BOARD.

NOTE: DEHUMIDISTAT TO BE INSTALLED NEXT TO THERMOSTAT. USE APRILAIRE MODEL 70 LIVING SPACE CONTROL WITH APRILAIRE DEHUMIDIFIER.

Project:
Date:
Drawing Title:
Drawing File:
Drawing Scale:

Catholic Charities Green Dream 2
2009-09-30
SK-04 Revised Mechanical Plan
MEP_LA NO Brown House.dwg
$3 / 16^{\prime \prime}=1$ '-0"

Sheet Title:
SK-04

	Builder Name:	Catholic Charities Operation Helping Hands	
	Project:	Green Dream 2	
Durability Inspection Checklist	Lot Number:	5007 Cartier Ave, New Orleans LA 70122	
Part 1 - Pre-drywall Inspection			
Foundation \& Framing	Location in Drawing Set, BSC Information Sheet Number*		Completion Verified
All wood formwork used for grade beam footings must be removed A capillary break separating the concrete piers from the wood sill beams must be provided A metal bracket has been installed on top of each concrete pier (also used as termite shield) Treated floor and wall framing All floor framing is treated to resist termite and water damage All interior and exterior wall framing is treated to resist termite and water damage End of roof trusses are treated with applied treatment to resiste termite and water damage	ref: n/a ref: Plans \& Sections ref: Plans \& Sections		\square
Pre-Cladding	Location in Drawing Set, BSC Information Sheet Number*		Completion Verified
Protect construction materials from moisture before installation Keep all building materials dry during storage on-site A drainage plane must be provided that is integrated with flashings Drainaqe plane has been installed in a continuous manner Sheet material has been properly lapped to drain water All flashing elements specified have been correctly installed Drainage plane overlaps flashing or connected by a transition membrane A drainage plane must be accompanied by a drainage space Materials to create drainage gap have been installed as specified Intentional drainage spaces are clear of construction debris Subsill flashing: windows and doors must be "pan-flashed" All windows and door openings are "pan-flashed" Pan-flashing installed with end dams and positive slope towards the exterior Flashing materials are correctly lapped Reservoir claddings must be "uncoupled" from wall assemblies Reservoir claddings (such as brick, stucco and fiber cement) are back-ventilated with min. 1/4" ventilation space (1 " for brick) or are installed over a moisture-tolerant and vapor impermeable material A continuous air barrier must be provided Air sealing provided between bottom plates and floor deck Rim joists areas are caulked or sealed with sprayed foam Carrying beams running to outside walls and beam pockets are sealed Perimeter of windows and doors are sealed on the interior side with low-expansion foam or sealant Bathtubs on exterior walls have draftstopping materials installed behind tub Interior soffits running to exterior walls have been draftstopped and air sealed Electrical wiring or outlets on exterior walls and other penetrations have been sealed Vapor control of wall, roof and foundation assemblies must be provided as specified Materials with vapor permeability characteristics matching the products specified for each assembly in the construction documents have been installed	ref: n/a ref: Details, BS ref: Sections, B ref: Sections \& 405, 406 ref: Sections, B	Dtls., BSC Information Sheets 300, 302 Dtls., BSC Information Sheet 300 Information Sheet 301 C Information Sheet 304 Details, BSC Information Sheets 403, 40 C Information Sheet 311	\square
Pre-Insulation Locke	Location in Drawing Set, BSC Information Sheet Number*		Completion Verified
Wet rooms should have floor drainage Install floor drain and drain pan where water heater is installed over living space Paper faced gypsum board to be used throughout house Plumbing should not be located in exterior walls Make plumbing easy to inspect and repair and insulate plumbing pipes to keep them warm (above dewpoint temperatures) Pipe insulation has been installed on exposed hot and cold runs not located in walls.	ref: BSC Inform ref: Sections ref: n / a ref: BSC Inform	ation Sheet 305 ation Sheet 305	
Pre-Drywall Lock L L	Location in Drawing Set, BSC Information Sheet Number*		Completion Verified
Install insulation to meet HERS Insulation Installation Grade 1 ENERGY STAR Thermal Bypass Inspection Checklist has been completed	ref: Sections, BSC Information Sheet 501		\square

	Builder Name:	Catholic Charities Operation Helping Hands	
	Project:	Green Dream 2	
Durability Inspection Checklist	Lot Number:	5007 Cartier Ave, New Orleans LA 70122	
Part 2 - Finish Inspection			
Mechanical System Inspection	Location in Drawing Set, BSC Information Sheet Number*		Completion Verified
Sealed combustion equipment Sealed combustion equipment provided as specified Sealed combustion equipment installed as specified Ventilation system design must have the capacity to meet the requirements of ASHRAE 62.2 and must be commissioned at 60\% of ASHRAE 62.2 Ventilation system provided and installed as specified Ductwork to inside and outside are properly installed and connected Ventilation system control has been installed and commissioned as specified Air filter housings must be airtight to prevent bypass or leakage Interior spaces must be air pressure balanced (less than 3 Pascals between all spaces). Transfer grilles or jump ducts to be provided for any closed room without a return grille (except bathrooms, closets, pantries and laundry rooms) Transfer grilles have been installed where indicated on the plans Duct systems properly sized and placed Duct runs are placed where indicated on the drawings or layout has been revised with mechanical designer Conditioning system design loads must be determined according to ACCA Manual J and equipment must be sized using ACCA Manual S Air conditioning system supplied and installed as specified Whole house dehumidification Whole house dehumidification system has been provided and installed as specified Dehumidification system controls have been installed and commissioned as specified Ducts should be located inside the enclosure air barrier. If located outside, leakage must be limited to 5% of the total air handling system rated air flow at high speed (nominal 400 CFM per ton) determined by pressurization testing at 25 Pa . Building cavities not used as part of the forced air supply or return system Supply and return ductwork sealed to be airtight Ductwork has been air sealed at joint locations and equipment connections Ductwork is sealed to supply and return boots Protect ductwork during construction Ductwork rough-in protected from construction debris Supply and return duct boots have been covered during interior finishing Exhaust vents and intake ducts correctly placed Exhaust and intake ducts installed where indicated on plans Clothes dryers vented outdoors	ref: Mech. Plar ref: Mech. Plan ref: Mech. Plan ref: n/a ref: Mech. Plan ref: Mech. Plan ref: Mech. Plar ref: Mech. Detais ref: n/a ref: Mech. Plar	, BSC Information Sheet 601	
Landscaping	Location in Drawing Set, BSC Information Sheet Number*		Completion Verified
Provide strips around buildings free of planting and organic mulch A 24 " wide strip free of organic mulch and planting has been provided around buildings Bushes and trees are at least 36" away from building Site surface water is controlled by appropriate grading and landscape measures Grade on all sides of building slopes away from building Patios and decks are installed lower than the finished floor and slope away from the building Finished grade is lower than main floor and slopes away from the building Stoops, porches and walkways are lower than the main finished floor and slope away from the buil Grade under house is higher than outside grade	uilding		
Exterior Finish	Location in Drawing Set, BSC Information Sheet Number*		Completion Verified
Separate wood from concrete or masonry with appropriate capillary break Deck and stair posts held off concrete with metal brackets or other non-organic spacer Detail deck to house connection (including ledger to wall connection) to shed water away from hou Install exterior flashing and drainage Gutters and downspouts or other roof drainage system has been installed Select building materials that are insect resistant (steel framing, concrete framing, treated wood framing and sheathing, plastic or plastic composite cladding, cement or fiber cement cladding, brick or stucco Fiber cement board has been installed under floor spray foam insulation Insect resistant materials are installed where specified on the plans	ref: Plans use and to allow n ref: BSC Inform ref: Plans \& Se	atural drying of assembly ation Sheet 302 tions	
Pre-Occupancy	Location in Drawing Set, BSC Information Sheet Number*		Completion Verified
Paper faced gypsum board should not be used in "wet areas" Paper-faced gypsum board not used in bathrooms, showers, laundry rooms and mudrooms Raise gypsum board minimum of $1 / 2^{\prime \prime}$ above concrete slab Washers should be equipped with single throw shut off valves Washing Machine connections are equipped with a single throw shut off valve No carpet in areas prone to get wet: bathrooms, laundry rooms, kitchens, and entryways No carpet has been installed in bathrooms, laundry rooms, kitchens, and entryways Vapor open design of construction assemblies maintained Vapor-permeable finish materials that do not interfere with vapor open design have been installed	ref: Sections, B ref: BSC Inforn ref: Sections, B ref: Sections, B	C Information Sheet 407 ation Sheet 305 C Information Sheet 305 CC Information Sheet 311	\square

* For BSC Information Sheets, see www.buildingscience.com/doctypes/information-sheets.

Written By: Katie Gunsch (BSC)
This report can be found in the following folder on the BSC server:
Building America/BA Communities/LA New Orleans Brown House/Admin/Site Visit Reports/2009-03-25 Green Dream 2 Site Visit Report.pdf.

Additional site visit photos can also be found on the BSC server:
Building America/BA Communities/LA New Orleans Brown House/Site Visit Photos/2009-03-26 Site Visit.

Project Blog:
www.greendream2.posterous.com

Address:
Date:
Time:
Weather:
Workers on Site:
Work in Progress:

5007 Cartier Ave, New Orleans LA 70122
2009-03-25
4:00 pm - 4:30 pm
Partly cloudy, 80 degrees
None

1. The site has been cleared of debris and any remaining concrete left over from the demolition of the house.
2. The tree and stump in the front yard have been removed.
3. Sand fill has been brought in to fill in the site.
4. A broken cast iron sewer line has been located near the back of the site.

Figure 1.1 - Broken Cast Iron Sewer Line

Figure 1.2 - View of the Site from Rear of Yard

2009-07-21 Green Dream 2 Site Visit Report

Written By: Katie Gunsch (BSC)

This report can be found in the following folder on the BSC server:
Building America/BA Communities/LA New Orleans Brown House/Admin/Site Visit Reports/2009-07-21 Green Dream 2 Site Visit Report.pdf.

Additional site visit photos can also be found on the BSC server:
Building America/BA Communities/LA New Orleans Brown House/Site Visit Photos/2009-07-21 Site Visit.

Project Blog:
www.greendream2.posterous.com

Address:
Date:
Time:
Weather:
Workers on Site:
Work in Progress:

5007 Cartier Ave, New Orleans LA 70122
2009-07-21
1:30 pm - 2:30 pm
Sunny, hazy 90 degrees
Foundation installer and volunteers

1. Volunteers are working with the foundation installer to set the concrete piers on the grade beams.
2. The treated lumber has arrived and is on site ready for framing.

Figure 1.1 - Volunteers setting the piers

Figure 1.2 - Treated lumber arrived on site

2009-09-17 Green Dream 2 Site Visit Report

Written By: Katie Gunsch (BSC)
This report can be found in the following folder on the BSC server:
Building America/BA Communities/LA New Orleans Brown House/Admin/Site Visit Reports/2009-09-17 Green Dream 2 Site Visit Report.pdf.

Additional site visit photos can also be found on the BSC server:
Building America/BA Communities/LA New Orleans Brown House/Site Visit Photos/2009-09-17 Site Visit.

Project Blog:
www.greendream2.posterous.com

Address:	5007 Cartier Ave, New Orleans LA 70122
Date:	$2009-09-17$
Time:	$8: 30$ am $-12: 30 \mathrm{pm}$
Weather:	Sunny, hazy 90 degrees
Workers on Site:	Volunteers, Operation Helping Hands staff, MEP installers, LSU staff
Work in Progress:	

1. BSC along with LSU and Operation Helping Hands held a window installation demonstration for the volunteers and interested professionals.
2. After the window demonstration, volunteers finished installing the windows.
3. A pre-construction MEP meeting was held to review the plans and specifications prior to installation of systems.

Figure 1.1 - Volunteers installing windows

Figure 1.2 - Installed window with flashing

