Fill in the search criteria to search the database or view index of all documents.

climates

Very Cold - A very cold climate is defined as a region with approximately 9,000 heating degree days or greater (65°F basis) or greater and less than 12,600 heating degree days (65°F basis).

Cold - A cold climate is defined as a region with approximately 5,400 heating degree days (65°F basis) or greater and less than approximately 9,000 heating degree days (65°F basis).

Mixed-Humid - A mixed-humid and warm-humid climate is defined as a region that receives more than 20 inches of annual precipitation with approximately 4,500 cooling degree days (50°F basis) or greater and less than approximately 6,300 cooling degree days (50°F basis) and less than approximately 5,400 heating degree days (65°F basis) and where the average monthly outdoor temperature drops below 45°F during the winter months.

Hot-Humid - A hot-humid climate is defined as a region that receives more than 20 inches of annual precipitation with approximately 6,300 cooling degree days (50°F basis) or greater and where the monthly average outdoor temperature remains above 45°F throughout the year. This definition characterizes a region that is similar to the ASHRAE definition of hot-humid climates where one or both of the following occur:

  • a 67°F r higher wet bulb temperature for 3,000 or more hours during the warmest six consecutive months of the year; or
  • a 73°F or higher wet bulb temperature for 1,500 or more hours during the warmest six consecutive months of the year.

Hot-Dry/Mixed-Dry - A hot-dry climate is defined as region that receives less than 20 inches of annual precipitation with approximately 6,300 cooling degree days (50°F basis)or greater and where the monthly average outdoor temperature remains above 45°F throughout the year.

A warm-dry and mixed-dry climate is defined as a region that receives less than 20 inches of annual precipitation with approximately 4,500 cooling degree days (50°F basis) or greater and less than approximately 6,300 cooling degree days (50°F basis) and less than approximately 5,400 heating degree days (65°F basis) and where the average monthly outdoor temperature drops below 45°F during the winter months.

Marine - A marine climate meets is defined as a region where all of the following occur:

  • a mean temperature of the coldest month between 27°F and 65°F;
  • a mean temperature of the warmest month below 72°F;
  • at least four months with mean temperatures over 50°F; and
  • a dry season in the summer, the month with the heaviest precipitation in the cold season has at least three times as much precipitation as the month with the least precipitation.

information

Building Science Insights are short discussions on a particular topic of general interest. They are intended to highlight one or more building science principles. The discussion is informal and sometimes irreverent but never irrelevant.

Building Science Digests provide building professionals from different disciplinary backgrounds with concise overview of important building science topics. Digests explain the theory behind each topic and then translate this theory into practical information.

Published Articles aare a selected set of articles written by BSC personnel and published in professional and trade magazines that address building science topics. For example, our work has appeared in Fine Homebuilding, Home Energy, ASHRAE's High Performance Buildings, The Journal of Building Enclosure Design and The Journal of Building Physics. We thank these publications for their gracious permission to republish.

Conference Papers are peer-reviewed papers published in conference proceedings.

Research Reports are technical reports written for researchers but accessible to design professionals and builders. These reports typically provide an in-depth study of a particular topic or describe the results of a research project. They are often peer reviewed and also provide support for advice given in our Building Science Digests.

Building America Reports are technical reports funded by the U.S. Department of Energy (DOE) Building America research program.

Designs That Work are residential Case Studies and House Plans developed by BSC to be appropriate for residential construction in specific climate zones. Case Studies provide a summary of results for homes built in partnership with BSC’s Building America team. The case study typically includes enclosure and mechanical details, testing performed, builder profile, and unique project highlights. House Plans are fully integrated construction drawing sets that include floor plans, framing plans and wall framing elevations, exterior elevations, building and wall sections, and mechanical and electrical plans.

Enclosures That Work are Building Profiles and High R-Value Assemblies developed by BSC to be appropriate for residential construction in specific climate zones. Building Profiles are residential building cross sections that include enclosure and mechanical design recommendations. Most profiles also include field expertise notes, material compatibility analysis, and climate challenges. High R-Value Assemblies are summaries of the results of BSC's ongoing High R-Value Enclosure research — a study that BSC has undertaken for the U.S. Department of Energy (DOE) Building America research program to identify and evaluate residential assemblies that cost-effectively provide 50 percent improvement in thermal resistance.

Guides and Manuals are "how-to" documents, giving advice and instructions on specific building techniques and methods. Longer guides and manuals include background information to help facilitate a strong understanding of the building science behind the hands-on advice. This section also contains two quick, easy-to-read series. The IRC FAQ series answers common questions about the building science approach to specific building tasks (for example, insulating a basement). The READ THIS: Before... series offers guidelines and recommendations for everyday situations such as moving into a new home or deciding to renovate.

Information Sheets are short, descriptive overviews of basic building science topics and are useful both as an introduction to building science and as a handy reference that can be easily printed for use in the field, in a design meeting, or at the building permit counter. Through illustrations, photographs, and straightforward explanations, each Information Sheet covers the essential aspects of a single topic. Common, avoidable mistakes are also examined in the What's Wrong with this Project? and What's Wrong with this Practice? mini-series.

Building America Reports
Aaron Grin, Jonathan Smegal, Joseph Lstiburek

Unvented roof strategies with open-cell and closed-cell spray polyurethane foam insulation sprayed to the underside of roof sheathing have been used since the mid-1990's to provide durable and efficient building enclosures. There have been isolated moisture related incidents that raise potential concerns about the overall hygrothermal performance of these systems. This project involved hygrothermal modeling of a range of rainwater leakage and field evaluations of in-service residential roofs using spray foam insulation. The exploration involved taking a sample of spray foam from the underside of the roof sheathing, exposing the sheathing, then taking a moisture content reading. All locations had moisture contents well within the safe range for wood-based sheathing.

Building America Reports
Christopher Schumacher, Robert LePage

There is little consensus on the incidence of and physics behind moisture problems in dense-packed roof assemblies. Only a handful of field research projects have considered the moisture performance of dense-packed roof assemblies and the majority of these were proprietary studies that were not made public. This document focuses on dense-packed insulation retrofits to roof assemblies in cold climates and identifies, describes and compares four strategies that designers, builders and manufacturers have implemented to avoid moisture problems in dense-packed roof assemblies.

Cold
Building America Reports
Ken Neuhauser

This project examines implementation of advanced retrofit measures in the context of a large-scale weatherization program and the archetypal Chicago, Illinois, brick bungalow. In response to the apparent weatherization program limitations with respect to homes with masonry bearing wall construction, this research project examines two distinct strategies for insulating and air sealing the top of houses. One strategy applies best practice air sealing methods and a standard insulation method to the attic floor. The other strategy creates an unvented roof assembly using materials and methods typically available to weatherization contractors.

Cold
Building America Reports
John Straube, Aaron Grin

The following report is an excerpt from the 2010 Building Science Corporation Industry Team Building America Annual Report. The goal of this research is to find optimally designed, cost effective roof insulation systems that can be included with other enclosure details to help reduce whole house energy use by 70%. This report will compare a variety of roof insulating strategies and present their advantages and disadvantages according to several comparison criteria.

Building America Reports
John Straube

The following report is an excerpt from the 2010 Building Science Corporation Industry Team Building America Annual Report. Many concerns, including the rising cost of energy, climate change concerns, and demands for increased comfort, have led to the desire for increased insulation levels in many new and existing buildings. Building codes and green building codes are being changed to require higher levels of thermal insulation both for residential and commercial construction. This report will review, and summarize the current state of understanding and research into enclosures with higher thermal resistance, so-called “High-R Enclosures.” Recommendations are provided for further research. For more information see Popular Topics/Foundations and Slabs and Popular Topics/High R-Value Walls.

Building America Reports
John Straube

This paper describes a hygrothermal modeling study, including all of the US climate zones, a range of interior humidity levels and numerous arrangements and types of insulation. The results showed that so long as airtightness is provided, and wintertime humidity is controlled, numerous unvented solutions using either or both spray foam (open and closed cell) and fibrous insulation (cellulose and mineral fiber) can be successful. Climate, the solar properties and exposure of the roofing, the air and vapor permeance of the insulation(s) and interior humidity are the most important factors to be considered in the design of moisture-safe unvented roof systems. For more information about roofs, see Popular Topics/Unvented Roof/Attic.

Building America Reports
Building Science Corporation

The following report is an excerpt from the 2009 Building Science Corporation Industry Team Building America Annual Report. BSC has been active for many years in working to help identify and address code and standards issues that are a barrier to the proper use of technologies and products in the design and construction of high efficiency homes. Code and Standards manifest in many forms from improper code interpretation or employment, missing code language, or incorrect code language. Three specific building code issues were identified for action during the building code cycle application to the 2012 Model Building Codes and discussed in this report including their current “adoption status.”

Building America Reports
Kohta Ueno

This is a report describing the test methodology and results for experiments run on two test houses at the Bonita Springs development in Fort Myers, FL. The goal was to determine the effect of attic ventilation in a hot-humid climate; previous work had shown that little to no benefit is derived from ventilation in terms of energy use, and that it is detrimental for moisture control. Two houses with identical orientations and plans were compared; one was ventilated at the typical 1:300 ratio, and the other had sealed vents. This work was conducted in order to move houses in hot-humid climates forward in technology in their building envelope and HVAC systems.

Hot-Humid

Pages