Fill in the search criteria to search the database or view index of all documents.

climates

Very Cold - A very cold climate is defined as a region with approximately 9,000 heating degree days or greater (65°F basis) or greater and less than 12,600 heating degree days (65°F basis).

Cold - A cold climate is defined as a region with approximately 5,400 heating degree days (65°F basis) or greater and less than approximately 9,000 heating degree days (65°F basis).

Mixed-Humid - A mixed-humid and warm-humid climate is defined as a region that receives more than 20 inches of annual precipitation with approximately 4,500 cooling degree days (50°F basis) or greater and less than approximately 6,300 cooling degree days (50°F basis) and less than approximately 5,400 heating degree days (65°F basis) and where the average monthly outdoor temperature drops below 45°F during the winter months.

Hot-Humid - A hot-humid climate is defined as a region that receives more than 20 inches of annual precipitation with approximately 6,300 cooling degree days (50°F basis) or greater and where the monthly average outdoor temperature remains above 45°F throughout the year. This definition characterizes a region that is similar to the ASHRAE definition of hot-humid climates where one or both of the following occur:

  • a 67°F r higher wet bulb temperature for 3,000 or more hours during the warmest six consecutive months of the year; or
  • a 73°F or higher wet bulb temperature for 1,500 or more hours during the warmest six consecutive months of the year.

Hot-Dry/Mixed-Dry - A hot-dry climate is defined as region that receives less than 20 inches of annual precipitation with approximately 6,300 cooling degree days (50°F basis)or greater and where the monthly average outdoor temperature remains above 45°F throughout the year.

A warm-dry and mixed-dry climate is defined as a region that receives less than 20 inches of annual precipitation with approximately 4,500 cooling degree days (50°F basis) or greater and less than approximately 6,300 cooling degree days (50°F basis) and less than approximately 5,400 heating degree days (65°F basis) and where the average monthly outdoor temperature drops below 45°F during the winter months.

Marine - A marine climate meets is defined as a region where all of the following occur:

  • a mean temperature of the coldest month between 27°F and 65°F;
  • a mean temperature of the warmest month below 72°F;
  • at least four months with mean temperatures over 50°F; and
  • a dry season in the summer, the month with the heaviest precipitation in the cold season has at least three times as much precipitation as the month with the least precipitation.

information

Building Science Insights are short discussions on a particular topic of general interest. They are intended to highlight one or more building science principles. The discussion is informal and sometimes irreverent but never irrelevant.

Building Science Digests provide building professionals from different disciplinary backgrounds with concise overview of important building science topics. Digests explain the theory behind each topic and then translate this theory into practical information.

Published Articles aare a selected set of articles written by BSC personnel and published in professional and trade magazines that address building science topics. For example, our work has appeared in Fine Homebuilding, Home Energy, ASHRAE's High Performance Buildings, The Journal of Building Enclosure Design and The Journal of Building Physics. We thank these publications for their gracious permission to republish.

Conference Papers are peer-reviewed papers published in conference proceedings.

Research Reports are technical reports written for researchers but accessible to design professionals and builders. These reports typically provide an in-depth study of a particular topic or describe the results of a research project. They are often peer reviewed and also provide support for advice given in our Building Science Digests.

Building America Reports are technical reports funded by the U.S. Department of Energy (DOE) Building America research program.

Designs That Work are residential Case Studies and House Plans developed by BSC to be appropriate for residential construction in specific climate zones. Case Studies provide a summary of results for homes built in partnership with BSC’s Building America team. The case study typically includes enclosure and mechanical details, testing performed, builder profile, and unique project highlights. House Plans are fully integrated construction drawing sets that include floor plans, framing plans and wall framing elevations, exterior elevations, building and wall sections, and mechanical and electrical plans.

Enclosures That Work are Building Profiles and High R-Value Assemblies developed by BSC to be appropriate for residential construction in specific climate zones. Building Profiles are residential building cross sections that include enclosure and mechanical design recommendations. Most profiles also include field expertise notes, material compatibility analysis, and climate challenges. High R-Value Assemblies are summaries of the results of BSC's ongoing High R-Value Enclosure research — a study that BSC has undertaken for the U.S. Department of Energy (DOE) Building America research program to identify and evaluate residential assemblies that cost-effectively provide 50 percent improvement in thermal resistance.

Guides and Manuals are "how-to" documents, giving advice and instructions on specific building techniques and methods. Longer guides and manuals include background information to help facilitate a strong understanding of the building science behind the hands-on advice. This section also contains two quick, easy-to-read series. The IRC FAQ series answers common questions about the building science approach to specific building tasks (for example, insulating a basement). The READ THIS: Before... series offers guidelines and recommendations for everyday situations such as moving into a new home or deciding to renovate.

Information Sheets are short, descriptive overviews of basic building science topics and are useful both as an introduction to building science and as a handy reference that can be easily printed for use in the field, in a design meeting, or at the building permit counter. Through illustrations, photographs, and straightforward explanations, each Information Sheet covers the essential aspects of a single topic. Common, avoidable mistakes are also examined in the What's Wrong with this Project? and What's Wrong with this Practice? mini-series.

Building Science DigestsNewsletters
John Straube

In traditional mass walls, e.g. a wall of solid masonry or earth, the resistance to rain penetration was only one aspect of enclosure performance (Photograph 1). Heat flow was also controlled by the thermal storage capacity of the massive walls, not...
Building Science Digests
John Straube

Airtightness testing has long—since the 1980’s—been used to test high-performance housing. The 2012 version of the International Residential Code requires testing of every new home. Recently there has been a growing trend of testing the airtightness of large buildings as well. This digest reviews why one would invest in airtightness testing for a large building, how the testing is done, how the results are interpreted, and how this information can be used.

Building Science Digests
John Straube

The design of building enclosures to control rain penetration and control rain shedding is typically based on experience and rules of thumb that make use of traditional details. Unlike heat flow, vapor diffusion, air leakage, etc. there is no theory of rain control to aid the designer or analyst of building enclosures.

Building Science Digests
John Straube

I have recently written about some aspects of the German Passiv Haus1 housing standard (see BSI-025: The Passive House Standard and the GreenBuildingAdvisor.com) as it applies to cold climates (that is DOE Climate Zones 5 and higher)...
Building Science Digests
John Straube

The Passivhaus (PH) standard is a set of voluntary criteria for an ultra-low energy use home. Originally developed in Germany for houses and low-rise multi-unit residential buildings, the standard has been applied to houses in a range of other...
Very ColdCold
Building Science Digests
John Straube

All space-conditioning systems are intended to provide a comfortable and healthy indoor environment.  Many, even most, systems are designed in such a manner that they cannot reliably provide fresh air and comfort while at the same time being energy...
Building Science Digests
John Straube

That part of any building that physically separates the exterior environment from the interior environment(s) is called the building enclosure or building envelope. Environmental separator is another term used to describe the enclosure, but note that this generic term also applies to separators of two different interior environments. The term building enclosure is preferred to the term building envelope largely because it is considered both more general and more precise. Also note that the building enclosure may contain, but is not the same as, the so-called thermal envelope, a term that is used to refer to the thermal insulation within the enclosure. The enclosure, the loadings it must resist, and its functions are addressed in this digest.

Building Science Digests
Armin Rudd

This Insight is an excerpt from Armin Rudd's "Ventilation Guide." This publication can be ordered online from www.buildingsciencepress.com. Experience is a great teacher, but much bad experience can be avoided through education. That is the goal of...
Building Science Digests
John Straube

The control of air flow is important for several reasons: to control moisture damage, reduce energy losses, and to ensure occupant comfort and health. Airflow across the building enclosure is driven by wind pressures, stack effect, and mechanical air handling equipment like fans and furnaces. A continuous, strong, stiff, durable and air impermeable air barrier system is required between the exterior and conditioned space to control airflow driven by these forces.

Building Science Digests
John Straube

Driving rain deposition is quantitatively the largest single source of moisture for most walls and roofs leading to building enclosure deterioration. Controlling rain penetration is, therefore, one of the most important parts of a successful moisture control strategy which involves understanding and predicting moisture movement within and through the enclosure to improve building enclosure performance, particularly durability. This document will consider rain control from a general to a specific level. The following sections will cover: basic moisture control principles that should be employed in the design of above-grade building enclosures; driving rain as a moisture load on walls; a classification system of the various rain control strategies available for walls; and finally, good design practices for walls.

Building Science Digests
Joseph Lstiburek

Moisture accumulates when the rate of moisture entry into an assembly exceeds the rate of moisture removal. When moisture accumulation exceeds the ability of the assembly materials to store the moisture without significantly degrading performance or long-term service life, moisture problems result.

Building Science Digests
John Straube

Providing thermal comfort without excess space conditioning costs is one of the primary requirements of buildings. Therefore, thermal control is an important aspect in almost all buildings. Understanding heat transfer and the temperature distribution through building materials and assemblies is also important for assessing energy use, thermal comfort, thermal movements, durability, and the potential for moisture problems. The control of heat flow in buildings requires insulation layers compromised with few thermal bridges, an effective air barrier system, good control of solar radiation, and management of interior heat generation.

Building Science Digests
John Straube

Predicting the future is very difficult, but examining trends and potential tipping points is useful as an aid to understanding the direction the building industry is headed, and where it might end up. Although some future changes can only be speculated upon, other trends are already occurring and causing changes. Below is a series of changes and possible changes that may influence the building industry and society.

Building Science Digests
John Straube

Historical works, notably the Roman Vetruvius’ Ten Books of Architecture, that describe buildings begin with an historical overview.  Archaeological and anthropological studies have furthered this understanding. The history of the built form and the building enclosure is more than just a curiosity: understanding the history helps explain many of the buildings types, construction techniques and building materials that we use today. This digest provides a brief overview of the development of the building enclosure and can serve as an entry point into a deeper historically-informed study of buildings and building science.

Building Science Digests
John Straube

When I see a fully glazed, floor-to-ceiling commercial or institutional building, I see an energy-consuming nightmare of a building that requires lots of heating and cooling at the perimeter just to maintain comfort. The result, on a cold winter day...
Building Science Digests
John Straube

The construction and operation of buildings consumes over a third of the world’s energy consumption, and 40% of all the mined resources. Striving to make buildings more sustainable, while saving construction and operating costs and improving health and occupant well being is not only possible and practical, it should be the goal of the building industry. Achieving this goal requires an awareness of the problem and the skills to design, specify, construct, and operate buildings in a manner that is often quite different from current standard approaches. This digest will review the challenge of sustainability, discuss methods of assessing green buildings, and recommend a process by which more sustainable buildings can be delivered.

Building Science Digests
John Straube

The future of energy is particularly unclear at present. Will the cost of oil rocket back to $150 per barrel or languish at $40? Will the cost of clean renewable energy generated by photovoltaic’s drop to a quarter of current prices? Will cost-...
Building Science Digests
John Straube

The environmental crisis, and hence green building design, revolve around a wide range of issues: habitat destruction, stormwater run-off, air pollution, climate change, and resource use. However, the on-going consumption of energy to operate,...
Building America Reports
Joseph Lstiburek

Since we use gas hot water heaters for space heating in some of our Building America houses we thought it appropriate that we weigh in on the discussion relating to using gas hot water heaters for space heating. We do not believe they are bad choices, nor do we believe they should be outlawed by the code. Based on Building America experience, this report is about selecting furnaces, water heaters, both or sometimes just one to accomplish both space heating and domestic hot water.  

Building America Reports
Armin Rudd, Joseph Lstiburek

Air flow measurements were taken for 7.6 m lengths of 12.7 cm through 22.9 cm diameter flexible ducts, with a 15.2 cm wall-cap, at duct pressures of -10 Pa to -120 Pa. Using these measurements and field experience, a five-step method was developed as a guide for sizing and installing the ventilation system. An economic evaluation was made by conducting hourly computer simulations to determine the impact on heating, cooling, and fan energy use for four U.S. climates. An effective ventilation system can be achieved using a filtered duct from out doors to the return side of a central air distribution fan with a specialized fan control that automatically cycles the fan if the fan has been inactive for a period of time.

Pages