Digests

Building Science Digests

BSD-005: Green Building and Sustainability

The construction and operation of buildings consumes over a third of the world’s energy consumption, and 40% of all the mined resources. Striving to make buildings more sustainable, while saving construction and operating costs and improving health and occupant well being is not only possible and practical, it should be the goal of the building industry. Achieving this goal requires an awareness of the problem and the skills to design, specify, construct, and operate buildings in a manner that is often quite different from current standard approaches. This digest will review the challenge of sustainability, discuss methods of assessing green buildings, and recommend a process by which more sustainable buildings can be delivered.

BSD-005: Green Building and Sustainability - Read More…

BSD-007: Historical Development of the Building Enclosure

Historical works, notably the Roman Vetruvius’ Ten Books of Architecture, that describe buildings begin with an historical overview. Archaeological and anthropological studies have furthered this understanding. The history of the built form and the building enclosure is more than just a curiosity: understanding the history helps explain many of the buildings types, construction techniques and building materials that we use today. This digest provides a brief overview of the development of the building enclosure and can serve as an entry point into a deeper historically-informed study of buildings and building science.

BSD-007: Historical Development of the Building Enclosure - Read More…

BSD-030: Rain Control Theory

The design of building enclosures to control rain penetration and control rain shedding is typically based on experience and rules of thumb that make use of traditional details. Unlike heat flow, vapor diffusion, air leakage, etc. there is no theory of rain control to aid the designer or analyst of building enclosures. An edited version of this document was published in Journal of Thermal Insulation and Building Envelopes, July 1999, pp. 41-56.

BSD-030: Rain Control Theory - Read More…

BSD-010: Looking at Tomorrow

Predicting the future is very difficult, but examining trends and potential tipping points is useful as an aid to understanding the direction the building industry is headed, and where it might end up. Although some future changes can only be speculated upon, other trends are already occurring and causing changes. Below is a series of changes and possible changes that may influence the building industry and society.

BSD-010: Looking at Tomorrow - Read More…

BSD-011: Thermal Control in Buildings

Providing thermal comfort without excess space conditioning costs is one of the primary requirements of buildings. Therefore, thermal control is an important aspect in almost all buildings. Understanding heat transfer and the temperature distribution through building materials and assemblies is also important for assessing energy use, thermal comfort, thermal movements, durability, and the potential for moisture problems. Heat flow occurs through the building enclosure via opaque enclosure elements, is directly transferred into the building by solar radiation through windows, is carried along with air across the enclosure by unintentional leakage and ventilation, and can be generated within the building by occupants and their activities. The control of heat flow in buildings requires insulation layers compromised with few thermal bridges, an effective air barrier system, good control of solar radiation, and management of interior heat generation.

BSD-011: Thermal Control in Buildings - Read More…

BSD-012: Moisture Control for New Residential Buildings

Moisture accumulates when the rate of moisture entry into an assembly exceeds the rate of moisture removal. When moisture accumulation exceeds the ability of the assembly materials to store the moisture without significantly degrading performance or long-term service life, moisture problems result.

BSD-012: Moisture Control for New Residential Buildings - Read More…

BSD-013: Rain Control in Buildings

Moisture is one of the most important agents leading to building enclosure deterioration. Understanding and predicting moisture movement within and through the enclosure istherefore of fundamental importance to predicting and improving building enclosure performance, particularly durability. Since driving rain deposition on walls and roofs is quantitatively the largest single source of moisture for most walls and roofs, it is no surprise that controlling rain penetration is one of the most important parts of a successful moisture control strategy. In fact, failure to control rain is likely the oldest and most common serious building enclosure performance problem. Commentators as long as Vitruvius (70 BC) bemoaned the challenges of controlling rain penetration. This document will consider rain control from a general to a specific level. The following sections will cover: basic moisture control principles that should be employed in the design of above-grade building enclosures; driving rain as a moisture load on walls; a classification system of the various rain control strategies available for walls; and finally, good design practises for walls. The rain control of roofs will be covered in more detail in another BSD.

BSD-013: Rain Control in Buildings - Read More…

BSD-014: Air Flow Control in Buildings

The control of air flow is important for several reasons: to control moisture damage, reduce energy losses, and to ensure occupant comfort and health. Airflow across the building enclosure is driven by wind pressures, stack effect, and mechanical air handling equipment like fans and furnaces. A continuous, strong, stiff, durable and air impermeable air barrier system is required between the exterior and conditions space to control airflow driven by these forces. Air barrier systems should be clearly shown and labelled on all drawings, with continuity demonstrated at all penetrations, transitions, and intersections. In addition, enclosure assemblies and buildings should be vertically and horizontally compartmentalized, may require secondary planes of airtightness (such as those provided by housewraps and sealed rigid sheathing) and may need appropriately air impermeable insulations or insulated sheathing.

BSD-014: Air Flow Control in Buildings - Read More…

BSD-018: The Building Enclosure

That part of any building that physically separates the exterior environment from the interior environment(s) is called the building enclosure or building envelope. Environmental separator is another term used to describe the enclosure, but note that this generic term also applies to separators of two different interior environments. The term building enclosure is preferred to the term building envelope largely because it is considered both more general and more precise. Also note that the building enclosure may contain, but is not the same as, the so-called thermal envelope, a term that is used to refer to the thermal insulation within the enclosure. The enclosure, the loadings it must resist, and its functions are addressed in this digest.

BSD-018: The Building Enclosure - Read More…

BSD-102: Understanding Attic Ventilation

Attics or roofs can be designed and constructed to be either vented or unvented in any hygro-thermal zone (Map 1). The choice of venting or not venting is a design and construction choice not a requirement determined by the physics or by the building code. The model building codes allow both vented and unvented roof assemblies. The applicable physics impacts the design of attic or roof systems as does the applicable building code but neither limit the choice.

BSD-102: Understanding Attic Ventilation - Read More…

BSD-103: Understanding Basements

Buildings used to be constructed over cellars. Cellars were dank, dark places where coal was stored. People never intended to live in cellars. Now we have things called basements that have pool tables, media centers and play rooms. Cellars were easy to construct – rubble, stone, bricks and sometimes block. If they got wet or were damp so what? Basements are different. They are not easy to construct if we intend to live in them. They need to be dry, comfortable and keep contaminants out. Over the last 50 years there has been a notable expansion of living space. The useful conditioned space of building enclosures is expanding to the outer edge of the building skin (Figure 1). Attics, crawlspaces, garages and basements are valuable real estate that are being used to live in or used for storage or places to locate mechanical systems. Basements are viewed by many as cheap space that can easily be incorporated into a home. Keeping basements dry, comfortable and contaminant free is proving to be anything but simple.

BSD-103: Understanding Basements - Read More…

BSD-104: Understanding Air Barriers

Controlling heat flow, airflow, moisture flow and solar and other radiation will control the interactions among the physical elements of the building, its occupants and the environment. Of these four, airflow “merits major consideration mainly because of its influence on heat and moisture flow” (Hutcheon, 1953). Airflow carries moisture that impacts a materials long-term performance (serviceability) and structural integrity (durability). Airflow also affects building behavior in a fire (spread of smoke and other toxic gases, supply of oxygen), indoor air quality (distribution of pollutants and location of microbial reservoirs) and thermal energy use. One of the key strategies in the control of airflow is the use of air barriers.

BSD-104: Understanding Air Barriers - Read More…

BSD-105: Understanding Drainage Planes

Controlling rain is the single most important factor in the design and construction of durable buildings and in the control of mold. Drainage planes are used in the design and construction of building enclosures to control rain. All exterior claddings pass some rainwater. Siding leaks, brick leaks, stucco leaks, stone leaks, etc. As such, some control of this penetrating rainwater is required. In most walls, this penetrating rainwater is controlled by the drainage plane that directs the penetrating water downwards and outwards.

BSD-105: Understanding Drainage Planes - Read More…

BSD-106: Understanding Vapor Barriers

The function of a vapor barrier is to retard the migration of water vapor. Where it is located in an assembly and its permeability is a function of climate, the characteristics of the materials that comprise the assembly and the interior conditions. Vapor barriers are not typically intended to retard the migration of air. That is the function of air barriers.

BSD-106: Understanding Vapor Barriers - Read More…

BSD-107: Understanding Ventilation in Hot-Humid Climates

Adding outdoor air in hot humid climates causes moisture problems right? Sometimes. It depends on the condition of the house before you start to add outdoor air. Contrary to popular belief, most houses in hot, humid climates are over ventilated due to duct leakage and induced air change from internal air pressure effects due to unbalanced air flow and door closure.

BSD-107: Understanding Ventilation in Hot-Humid Climates - Read More…

BSD-108: Investigating and Diagnosing Moisture Problems

Water comes in four forms: solid, liquid, vapor and adsorbed. All four forms can cause grief to building owners, designers and contractors. When water causes building problems investigating and diagnosing the problem can be challenging because water constantly changes its form inside a building and within its materials. The investigator must hunt down the water thinking like water.

BSD-108: Investigating and Diagnosing Moisture Problems - Read More…

BSD-109: Pressures in Buildings

Air flow in buildings is one of the major factors that governs the interaction of the building structure with the mechanical system, climate and occupants. If the air flow at any point within a building or building assembly can be determined or predicted, the temperature and moisture (hygrothermal or pyschometric) conditions can also be determined or predicted. If the hygrothermal conditions of the building or building assembly are known, the performance of materials can also be determined or predicted

BSD-109: Pressures in Buildings - Read More…

BSD-110: HVAC in Multifamily Buildings

Are multifamily buildings one building or a bunch of individual buildings sharing the same structure? Should services and systems be shared or individual? The passions regarding these questions are as strong as those separating Yankee fans and Red Sox fans.

BSD-110: HVAC in Multifamily Buildings - Read More…

BSD-111: Flood and Hurricane Resistant Buildings

We learn our lessons from disaster. Hurricane Andrew taught us about wind. Hurricanes Charley, Frances and Jeanne taught us about rain. The Red River of the North Basin taught us about floods. Hurricane Katrina had it all: wind, rain and flood. That we will rebuild, and rebuild in the same place, is not in doubt. This is what we do – for better or worse. If we are to rebuild and if we are to rebuild in the same place how should we rebuild?

BSD-111: Flood and Hurricane Resistant Buildings - Read More…

BSD-112: Building Science for Strawbale Buildings

This digest will begin with a brief description of the system and materials, review moisture problems in buildings, and summarize how moisture control should be dealt with in strawbale buildings.

BSD-112: Building Science for Strawbale Buildings - Read More…

BSD-113: Ground Source Heat Pumps ("Geothermal") for Residential Heating and Cooling: Carbon Emissions and Efficiency

There has been a recent surge of interest in Ground Source Heat Pump (GSHP or “geothermal” or GeoExchange™) systems for residential projects. Outrageous claims and misunderstandings about how they work are common. This digest provides some basic information and definitions, offers advice on how to compare the carbon emissions, and defines the climate regions and operating conditions for which GSHP systems are best suited.

BSD-113: Ground Source Heat Pumps ("Geothermal") for Residential Heating and Cooling: Carbon Emissions and Efficiency - Read More…

BSD-114: Interior Insulation Retrofits of Load-Bearing Masonry Walls In Cold Climates

This digest reviews the moisture control principles that must be followed for a successful insulated retrofit of a solid load-bearing masonry wall. Two possible approaches to retrofitting such walls are presented and compared.

BSD-114: Interior Insulation Retrofits of Load-Bearing Masonry Walls In Cold Climates - Read More…

BSD-115: Wood Pitched Roof Construction

Pitched roofs of either wood rafter and joist or truss construction are used in the construction of literally millions of homes and small commercial buildings each year. There are variations in these roofs, but there are relatively few primary options. The following digest describes the most common types of wood pitched roofs, their enclosure functions, and common modes of failure.

BSD-115: Wood Pitched Roof Construction - Read More…

BSD-119: Summer Condensation Problems in Ice Arenas

Ice rinks and arenas are a common building type in many communities. The trend over the last 25 years has been to operate these arenas for greater periods of the year, often throughout the summer. Also, an increasing number of such buildings are being built in areas with warm, humid summer weather. The result has been an increase in the number of reported moisture problems, most of which revolve around summer condensation. This digest will describe the causes and discuss potential retrofit solutions for summer condensation in ice arenas.

BSD-119: Summer Condensation Problems in Ice Arenas - Read More…

BSD-135: Ice Dams

Ice dams are a common roof performance problem in buildings that experience snowfall and at least a month of below freezing temperatures. The combination of sufficient roof pitch, adequate insulation just above the exterior wall, and air sealing at the wall-roof assemblies transition are all essential to prevent ice dams. But ice dams can occur even in properly detailed roof assemblies from differential solar snow melt. This digest outlines both the causes and solutions to ice dam problems.

BSD-135: Ice Dams - Read More…

BSD-138: Moisture and Materials

Moisture is involved in most building problems. The most serious tend to be structural damage due to wood decay, unhealthy fungal growth, corrosion, freeze-thaw, and damage to moisture sensitive interior finishes. Avoiding these problems requires an understanding of moisture, the nature of materials, and how it interacts with materials. This digest deals with these fundamentals.

BSD-138: Moisture and Materials - Read More…

BSD-139: Deep Energy Retrofit of a Sears Roebuck House—A Home for the Next 100 Years

The American Foursquare, a Sears, Roebuck & Co. kit home, was a staple of small American towns between 1908 and 1940. More than 100,000 of them were built in America. Homes built prior to 1980 make up 80% of the housing stock in the United States, and are responsible for a majority of the residential energy use in the country. All of the renovations used systems engineering principles to ensure good indoor air quality and longterm durability while providing deep energy reductions. This posting is permission of ASHRAE. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

BSD-139: Deep Energy Retrofit of a Sears Roebuck House—A Home for the Next 100 Years - Read More…

BSD-144: Increasing the Durability of Building Constructions

The current building industry focus on durability is in part a reaction to the current perceived lack of it. Warranty claims and callbacks are viewed as increasing. Litigation and insurance costs are felt to be rising as a result. Another reason for the current focus on durability is the recognition that sustainability is not possible without durability. If you double the life of a building and you use the same amount of resources to construct it, the building is twice as resource efficient. Therefore durability is a key component of sustainability. It seems that one thing that both the development community and the environmental community can agree on is that durability is a good thing. What do we know about durability and how do we know it? The lessons of durability have come principally out of failure. Engineering is an iterative process of design by failure. Buildings are constructed. Problems are experienced. Designs and processes are changed. Better buildings are constructed. The building industry is in essence a reactive industry, not a proactive industry. It can be argued that the industry continues to do things until they become intolerably bad and then the industry changes. Examining failures gives us guidance on increasing the durability of building constructions.

BSD-144: Increasing the Durability of Building Constructions - Read More…

BSD-146: EIFS - Problems and Solutions

Stucco and EIFS are common cladding systems that appear similar from the exterior. These systems have very different attributes however. This Digest explains the reasons why face-sealed EIFS are fundamentally flawed as cladding systems for most applications, and describes how drained EIFS can be used successfully in almost all climate zones and exposures. Cracks, lamina deterioration, and movement joints are also discussed.

BSD-146: EIFS - Problems and Solutions - Read More…

BSD-149: Unvented Roof Assemblies for All Climates

A brief description of different types of unvented roof assemblies and the benefits of unvented roof construction.

BSD-149: Unvented Roof Assemblies for All Climates - Read More…

BSD-150: Black Stains on Carpets and Ghosting of Framing

This digest offers a detailed explanation of the causes of carpet discoloration, particulate deposits on surfaces and "ghosting" of wood stud members on the interior gypsum board surfaces of exterior walls.

BSD-150: Black Stains on Carpets and Ghosting of Framing - Read More…

BSD-151: Understanding Primary/Source and Site Energy

The difference between site and source energy is a vital concept to understand when looking at the energy performance of buildings—failing to account for the difference will result in an apples-to-oranges comparison that does not give the true picture of a building’s energy consumption. This document explains how these two types of energy are accounted for differently and why.

BSD-151: Understanding Primary/Source and Site Energy - Read More…

BSD-152: Building Energy Performance Metrics

Putting metrics on building energy performance is a required step to make any progress on low-energy use and/or “green” buildings. However, there are many confusing and contradictory metrics available; to speak a common language, it is necessary to understand the topics that are behind these measurements. These topics include site vs. source energy, modeled results vs. reality, US average energy use figures, and methods of normalizing energy use. The normalization of energy use intensity (EUI), or dividing by square footage is examined; several significant problems in applying this metric to residential use are demonstrated. Various other metrics are presented, as well as a proposed method to provide all of the useful building energy information in a format that allows normalization by any chosen metric.

BSD-152: Building Energy Performance Metrics - Read More…

BSD-148: Simplified Prediction of Driving Rain on Buildings: ASHRAE 160P and WUFI 4.0

Driving rain on building facades is on of the largest sources of moisture that impacts durability of enclosures. Several approaches to predicting driving rain on buildings have been developed over the last 50 years. Field measurements have been collected on more than a dozen buildings in several different countries. Based on this research, and some CFD modeling studies, simplified approaches have been standardized in a British Standard and German guidelines. This digest consolidates and summarizes this research to provide a practical method for predicting driving rain deposition for a wide range of purposes, but particularly to aid in WUFI modelling and ASHRAE 160P analysis.

BSD-148: Simplified Prediction of Driving Rain on Buildings: ASHRAE 160P and WUFI 4.0 - Read More…

BSD-163: Controlling Cold-Weather Condensation Using Insulation

Condensation within walls during cold weather is a common performance problem. Most such condensation is due to air leakage, not diffusion. Although air barrier and vapor control layers can reduce the quantity and occurrence of condensation due to both mechanisms, the use of exterior insulation (even if that insulation is a vapor barrier and/or air barrier) can warm sensitive surfaces within a wall and thereby eliminate or reduce condensation risks. This digest provides the background for designers to select the insulation levels need to reach specific levels of condensation control.

BSD-163: Controlling Cold-Weather Condensation Using Insulation - Read More…

BSD-200: Low-Energy Commercial and Institutional Buildings: Top Ten Smart Things to Do for Cold Climates

The energy used in institutional, commercial, and industrial buildings in cold climates (zone 4 and above) is substantial. Most of this energy is used after construction is complete; hence, reducing the operational energy use and increasing durability should be the prime concern of those who wish to design and build "green" buildings. This digest discusses the ten strategies that will have the greatest impact, based on experience with successful buildings, modeling, and the literature in the field.

BSD-200: Low-Energy Commercial and Institutional Buildings: Top Ten Smart Things to Do for Cold Climates - Read More…

BSD-040: Airtightness Testing in Large Buildings

Airtightness testing has long—since the 1980’s—been used to test high-performance housing. The 2012 version of the International Residential Code requires testing of every new home. Recently there has been a growing trend of testing the airtightness of large buildings as well. This digest reviews why one would invest in airtightness testing for a large building, how the testing is done, how the results are interpreted, and how this information can be used.

BSD-040: Airtightness Testing in Large Buildings - Read More…

1-41 of 41 Items