Peter Baker

Commercial Deep Energy Retrofit: Castle Square Case Study

November 16, 2017

AIA New Hampshire

Castle Square

Castle Square DER

Castle Square Mid-Rise Retrofit

Project Overview:

- $\, {\sf Occupied} \, \, {\sf rehabilitation} \, \,$
- 1960's era, brick and concrete public housing structure
- Majority owned by residents association

Castle Square DER

Castle Square Mid-Rise Retrofit

Project Objective:

- Leverage tax incentive financing, grants, incentives, technical support, etc. to include Deep Energy Retrofit in rehabilitation scope
- Rehabilitation of otherwise limited scope

Project Overview:

- Owner: Castle Square Tenants Organization,
 Winn Development
- Location: Boston, MA
- Buildings: 4 Buildings, 7 stories (6 Residential over Ground Floor Commercial)
- Units: 192 Units, 48 Units/Building, 600-900 sq. ft./Unit

Castle Square DER

Circumstances of the Project

- · Originally built as subsidized housing
 - Small, compact apartments
 - Economy of layout
 - Structure affords no opportunity to run services in interstitial spaces,
 - Structure and aesthetic expression poses challenge to thermal performance

Castle Square DER

Circumstances of the Project

- 51% Tenant Owned
 - ➤ CSTO in charge
 - ➤Interests of tenant group protected
 - > Driving factors for the "energy" measures: Comfort, IEQ concerns

Castle Square DER

Circumstances of the Project

- 100% occupied renovation (!)
 - Severe constraints on scope within apartments
 - Completed over 2-3 days
 - Tenants return to functioning kitchen first day
 - Belongings in bedrooms, living room not moved

Property Management Concerns:

- IAQ
- Comfort
- Energy costs
- Water leakage
- Façade maintenance and repair issues

Castle Square DER

Castle Square Mid-Rise Retrofit

Project Overview:

- Ambitious energy performance goals
 - Estimated Heating and Water Heating Energy Savings: >70%
 - Combined Gas & Elec. Savings: >50%
- Construction Start: October, 2010
- Construction Schedule: 18 Months

What do we have to work with?
Understanding the building through:

- -Testing/measurement
- -Investigation of construction
- -Simple analysis

Castle Square Mid-Rise: Testing Testing and Measurement: ■ Leakage to outside (guarded testing) ➤~2.5 ACH50 ➤~0.7 cfm50 / sf exterior enclosure ■ Total leakage for apartment units (unguarded) ➤~10-17 ACH50 ➤~0.5-0.8 cfm50 / sf total enclosure

Testing, investigation, analysis:

- Building is moderately (but not abnormally) air leaky
- Apartment units are not well contained
- Any significant improvement to energy performance will require adding insulation to walls

Castle Square DER

Castle Square Mid-Rise Retrofit

Performance Targets:

- -R-40 Walls
- -R-5 Windows
- -R-40 Roof
- -Improve compartmenting as much as possible

Castle Square DER

Castle Square Mid-Rise Retrofit

Testing, evaluation, analysis:

- High performance will require
- 1. adding insulation to walls,
- 2. controlling infiltration and ventilation,
- 3. improving windows

Castle Square Airflow Control/Ventilation

- Avoid cross-contamination
- Provide effective ventilation with minimal energy inputs
- Reduce drivers of infiltration
- Compartmenting of apartments is critical to ventilation performance

Ventilation

Context:

- Odor complaints a major motivation for residents
- Exhaust ventilation a part of existing infrastructure
- Project aspiring to LEED-NC recognition (ventilation distribution requirements)

Castle Square DER

Ventilation

Options investigated:

- ➤ HRV per apartment
 - Ceiling too low for dropped soffit in circulation areas
 - Asbestos made penetration of partitions impractical

➤ Central supply and Hx

- Would need to refit or reconfigure riser
- Distribution within apartment

Castle Square DER

Ventilation

Selected approach:

- ➤ Use existing ventilation shafts, exhaust
 - Controlled rate at unit CAR
 - Seal exhaust riser from roof
 - Passive inlet vent (PIV)

Ventilation

Whither the ventilation supply:

- Passive Inlet Vents (PIV)
 - Concern about effectiveness of passive vents
 - Act as intake only when apartment negative WRT exterior
 - Could exhaust ventilation act to depressurize enough – depends on how tight apartment is
 - Is source controlled?

Compartmenting

Context:

- Odor complaints a major motivation for residents
- Project aspiring to LEED-NC recognition (apartment air tightness requirement)

Castle Square DER

Compartmenting

How to identify effective and important measures?

- ➤ Have a look at building (may have to get destructive)
 - Understand/confirm construction
 - Assess significance of holes
 - Devise approaches to seal holes
 - Test implementation of measures.

Castle Square DER

Compartmenting

Challenges:

- >Occupied renovation severely limits opportunities
 - 2 3 days total for interior work
 - Belongings not moved from living and bedrooms
- >Interstitial interconnected
 - Openings into shafts
 - Hollow walls
- ➤ Limited disruption beyond kitchen and bath

Castle Square DER

Compartmenting

Building Science Corporation

Context

- Buildings are un-insulated
- Significant air leakage comfort complaints (papers blowing off of desks)
- Exterior rain infiltration issues
- Façade maintenance issues
- R-40 performance goal

Castle Square DER

Castle Square Wall Insulation Strategy

Challenges:

- Occupied Retrofit
- Significant Thermal Bridging of Concrete Structure
- Existing Building Construction Tolerances

Options pursued:

- Exterior air barrier, insulation and cladding
- Exterior insulation and finish system (EIFS)
- Insulated metal panels (IMP)

Castle Square DER

Castle Square DER

Castle Square Wall Insulation Strategy

• Exterior air barrier, insulation, and cladding

Castle Square Wall Insulation Strategy

- Exterior air barrier, insulation, and cladding:
 - Large range of options
 - Insulation types
 - Air barrier materials
 - · Cladding options

Castle Square DER

Castle Square Wall Insulation Strategy

- Exterior air barrier, insulation, and cladding:
 - Fire concerns
 - Lack of UL rated assemblies
 - Insulation thickness needed to achieve desired R-Value could be significant

• Exterior insulation and finish system (EIFS)

DSC Building Science Corporation

Castle Square DER

Castle Square Wall Insulation Strategy

- Exterior insulation and finish system (EIFS)
 - Lower cost option
 - No need for design of cladding attachment system

Castle Square DER

Castle Square Wall Insulation Strategy

- Exterior insulation and finish system (EIFS)
 - Thick layers of insulation needed to achieve design goals
 - Insurance concerns (Fire, water, durability)

Castle Square DER

Castle Square Wall Insulation Strategy

• Insulated metal panels (IMP)

- Insulated metal panels (IMP)
 - High R-Value thinner overall thickness
 - Fire rated
 - Durable

Castle Square DER

Castle Square Wall Insulation Strategy

- Insulated metal panels (IMP)
 - Attachment due to building variances
 - Water and Air control approach:
 - Use panels as the complete enclosure? (air barrier, insulation, water management)
 - Use the panels as an insulated cladding with another air barrier and water management layer behind?

- Wall System Approaches for Super Insulation (R40) Retrofit
 - Field-constructed system separate components: applied air barrier and drainage plane, cladding attachment, exterior insulation, and cladding;
 - judged to costly and complicated
 - EIFS (Exterior Insulation and Finish System) required thickness not approved by insurance.
 - Insulated metal panel system

Castle Square DER

Castle Square Wall Insulation Strategy

- Insulated metal panels (IMP)
 - Compartmentalization of the living units

