

Learning Objectives

Participants will:

- Learn about the risks associated with high-R or superinsulated walls, relative to conventional/code construction?
- 2. Understand some of the options for constructing high-R walls in cold climates?
- 3. Learn about moisture conditions and resulting damage are seen at double stud wall sheathing after experiencing high interior humidity conditions?
- 4. Understand the effect vapor permeance can have on cold-climate wall performance

Kohta Ueno

Field Monitoring for Cold-Climate
Double Stud Walls with Cellulose and
Low Density Foam Insulation

BEST Conference Building Enclosure Science & Technology April 15, 2015

BEST

CONFERENCE

Building Enclosure Science & Technology

Background

BEST4 - Monitoring Double Stud Walls with ocSPF and Cellulose

© buildingscience.com

Double Stud Wall Monitoring

- Double stud wall advantages:
 - High R values
 - Simplifies exterior detailing (few changes to standard practice)
 - Lower cost vs. other high-R walls?
- Moisture risks due to interstitial condensation?
 - Most common failure, after rain control issues
 - Air barrier imperfections—increase risk
 - Air permeable low-density insulations—increase risk
 - Air impermeable insulations (foams)—decrease risk
 - Reduce risk with "skim" of spray foam at sheathing?

BEST4 - Monitoring Double Stud Walls with ocSPF and Cellulose

© buildingscience.com

Wall Condensation Potentials Double stud wall 4" insulating sheathing (0.57) Sheathing (0.57) Sheathing (0.57) Foundation wall Foundation wall

Experimental Setup

BEST4 - Monitoring Double Stud Walls with ocSPF and Cellulose

© buildingscience.com

Wall Construction Vinyl siding ZIP wall sheathing (OSB) Class III vapor control (latex paint) IRC R601.3.1—vented cladding over OSB

Boundary Conditions Takeaways

- First Winter (Partial)
 - Unoccupied conditions (no occupant moisture generation)
 - Very low interior RH
 - 5220 HDD Base 65 vs. 6220 HDD "normal"
- Second Winter
 - Occupied family of four (2 adults, 2 children)
 - Ventilation system not running, ~1 ACH 50 → High RHs
- Third Winter
 - Winter of the "polar vortex"
 - Occupied conditions (same family)
 - Ventilation system running → RHs ~15-30%

BEST4 - Monitoring Double Stud Walls with ocSPF and Cellulose

© buildingscience.com

Results: Wall Monitoring BEST4 - Monitoring Double Stud Walls with ocspf and Cellulose 18 © buildingscience.com

Wall Disassembly

BEST4 - Monitoring Double Stud Walls with ocSPF and Cellulose

© buildingscience.com

South Side Disassembly | The state of the s

Analysis

BEST4 – Monitoring Double Stud Walls with ocSPF and Cellulose

31 © buildingscience.com

Colder Sheathing with More Insulation?

- Double stud wall sheathing maybe ~1 F or less colder at coldest conditions
- Steady state analysis predicts 0.8 F difference @ 7 F outdoors
- Wintertime energy/Btu's through sheathing possibly more important (drying energy): doubling insulation = halving heat flow
- 12" vs. 5.5" cavity insulation different than cavity vs. exterior insulation!

BEST4 - Monitoring Double Stud Walls with ocSPF and Cellulose

32 buildingscience.com

Vapor Permeance of Insulation Layer			
Wall ID	Insulation Material	Vapor Permeability (Insulation Only)	Vapor Permeability (Add 10 Perm Class III Vapor Retarder)
N1/S1	12 in. 0.5 PCF foam	1.8-2.5 perms	1.5–2.0 perms
N2/S2	12 in. cellulose	7.0–10 perms	4.0-5.0 perms
N3/S3	5-1/2 in. 0.5 PCF foam	4.0–5.5 perms	2.9–3.5 perms

- Insulation-only, vs. adding 10 perm Class III vapor retarder (latex paint)
- 12" of ocSPF (brand used here) provides reasonable interior vapor control

BEST4 - Monitoring Double Stud Walls with ocSPF and Cellulose

buildingscience.com

Why Aren't The Walls Wrecked?

- 20% MC or lower—decay fungi inhibited
- Best growth 25-30% MC range
- All walls had MCs over 20% in winter 2; cellulose 30%+
- Condensation indicated—liquid water more important for mold/decay than RH alone

BEST4 - Monitoring Double Stud Walls with ocSPF and Cellulose

3 Duildingscience cor

Protective Mechanisms

- OSB Sheathing—all MDI adhesive
- Cellulose fiber insulation
 - Borate preservative/fire retardant—also leaches into adjacent materials
 - Moisture storage in cellulose
 - Airflow retarding qualities
- Open cell polyurethane spray foam
 - Oxygen restriction?

BEST4 - Monitoring Double Stud Walls with ocSPF and Cellulose

35 © buildingscience.com

ocSPF Protective Mechanisms

 Food science literature—oxygen needs to be in PPM range before inhibiting mold growth. Mold can get oxygen from substrate.

BEST4 - Monitoring Double Stud Walls with ocSPF and Cellulose

buildingscience.com

Protective Mechanisms

- OSB Sheathing—all MDI adhesive (no PF)
- Cellulose fiber insulation
 - Borate preservative/fire retardant—also leaches into adjacent materials
 - Moisture storage in cellulose
 - Airflow retarding qualities
- Open cell polyurethane spray foam
 - Oxygen restriction?
 - "Flash heating"? Hot enough long enough?
 - Surface treatment (film formation)?
 - Capillary redistribution (through ocSPF pores)?

BEST4 - Monitoring Double Stud Walls with ocSPF and Cellulose

buildingscience.co

Conclusions

BEST4 - Monitoring Double Stud Walls with ocSPF and Cellulose

3 buildingscience.coi©

Monitoring Conclusions

- "Normal" interior RH conditions:
 - ocSPF walls stayed below 20% MC—SAFE
 - Cellulose > 20% MC on north—WORRYING, BUT...
- High interior RH conditions
 - ocSPF walls peaked in 18-25% MC range
 - Cellulose >30% MC, condensation indicated
- Each summer, walls dried to safe conditions
- ASHRAE 160 and mold isopleths say these walls have failed
- Disassembly showed all walls look okay
 - Sheathing reinstalled

BEST4 – Monitoring Double Stud Walls with ocSPF and Cellulose

39 © buildingscience.com

Construction Recommendations

- Based on Zone 5A Climate
- Cellulose walls
 - Class III (latex paint) risky
 - Class II (VR paint, variable-permeability membrane safer)
 - Class I (polyethylene) NOT recommended
- ocSPF walls
 - ocSPF seems to provide sufficient vapor control
 - Class II possible option on conservative side
- Mechanical ventilation system vital
- Exterior insulated walls much more moisture-safe!

BEST4 - Monitoring Double Stud Walls with ocSPF and Cellulose

4 O huildingscience co

