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Abstract:

This Technical Report describes the modeling of typical wall assemblies that have performed
well historically in various climate Zones. The provided information can be generalized for
application to a broad population of houses, within the limits of existing experience. WUFI
software model was calibrated or “tuned” using wall assemblies with historically successful
performance. Running the rainwater and airflow “tuned” WU software model generated the
library of input data and results presented. The results agree with bistorical experience of
these assemblies constructed in the climate gones modeled. The files present various custom
settings that will help avoid results that will require overly conservative enclosure assemblies.
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Executive Summary

The Technical Report describes the modeling of typical wall assemblies that have performed
well historically in various climate zones. The WUFI (Wdrme und Feuchte instationdr) software
(Version 5.3) model was used. A library of input data and results are provided. The provided
information can be generalized for application to a broad population of houses, within the limits
of existing experience.

The WUFI software model was calibrated or “tuned” using wall assemblies with historically
successful performance. The primary performance criteria or failure criteria establishing historic
performance was moisture content of the exterior sheathing - More specifically, historic reports
of decay, based on observation of large numbers of wall assemblies (“buildings”) over a decade
or longer. The primary “tuning” parameters (simulation inputs) were airflow and specifying
appropriate material properties. “Rational” hygric loads were established based on experience —
specifically rain wetting and interior moisture (RH levels). The “tuning” parameters were
limited or bounded by published data or experience.

The WUFI software model is a one-dimensional combined heat and moisture flow model.
Typical building assemblies are multi-layer systems with complex three-dimensional airflow
pathways. One-dimensional combined heat and moisture flow models have proven difficult to
use for analysis in these types of assemblies due to the complexity added by the airflow and rain
components.

Rain is a significant moisture load: modeling the rain transport mechanism—a three dimensional
phenomena in a multi-layer system—adds more complexity. The WUFI rain modeling inputs
assumed a fraction (1%) of the incident water penetrating past the cladding, and a smaller
fraction (0.01%) past the water control layer and into the sheathing.

WUFTI software is capable of modeling cladding ventilation, by introducing interior or exterior
condition air into an airspace within the assembly. This allows for explicit (and correct)
modeling of ventilated rainscreen behaviors. This airflow model within WUFI also allows the
analysis of “through the assembly airflow” (i.e., air leakage through typical imperfect
assemblies). This flow was approximated by adding air spaces between the insulation and
sheathing, where interior and exterior-sourced air was introduced.

Running the rainwater and airflow “tuned” WUFI software model generated the library of input
data and results presented. The results agree with historical experience of these assemblies
constructed in the climate zones modeled.

The WUFI templates provided with this report supply useful information resources to new or
less-experienced users. The files present various custom settings that will help avoid results that
will require overly conservative enclosure assemblies. Overall, better material data, consistent
initial assumptions, and consistent inputs among practitioners will improve the quality of WUFI
modeling, and improve the level of sophistication in the field.
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1 Problem Statement

1.1 Introduction

Hygrothermal simulations such as WUFTI (Kiinzel 2002) are coming into increasingly common
use among building science researchers and practitioners, architects and designers, and energy
analysts. Such simulations have been shown to be powerful and validated tools that predict
hygrothermal behavior of enclosure assemblies. Simulation developers have continued to
expand the capabilities of such tools over time.

However, with increasing dissemination of these modeling tools — most notably WUFTI - less-
experienced or less-informed practitioners have run models that provide unrealistic results—
typically overly conservative. In some cases, these results clearly contradict extensive field
experience and known history of assemblies, showing failure when they do not occur in reality.
In other more worrisome cases, models run on assemblies that clearly have not performed
historically show successful performance. This has resulted in confusion in the building
industry—specifically, problems with advancing knowledge of moisture-safe building
enclosure/shell assemblies. Development of moisture-safe enclosure assemblies is a component
that will contribute to the Building America target of reducing residential carbon emissions 20%
by 2020 and 80% by 2050.

NREL and the Standing Technical Committee on Enclosures presented top priorities for research
in their document, “Building America Technical Innovations Leading to 50% Savings — A
Critical Path” (NREL 2013). Critical Milestone E4, under Enclosures states:

Develop guidance on design methods for enclosure design with a focus on above-
grade walls; guidance to be provided for both new construction and retrofits in
all U.S. climate zones.

The Technical Report addresses this priority by modeling typical wall assemblies that have
performed well historically, and demonstrating that these models agree with historic experience
when modeled correctly. A library of input data and results are provided.

1.2 Background

Hygrothermal analysis is a relatively new field. The fundamentals date back to the 1950s.
Analysis was observation and experience based. The major focus was rain and groundwater
control. As insulation was introduced into assemblies, energy flows were altered, resulting in
materials remaining wetter for longer periods of time. Simultaneously, new building materials
were introduced that were inherently more water sensitive. The focus shifted from rain and
groundwater to vapor movement in the form of air transport and molecular diffusion.
Calculation methods of predicting performance and assessing risk were primitive and typically
fundamentally flawed. Analysis remained rooted in observation and experience—i.e., a “build it,
wet it, watch what happens” methodology.

In the 1980s with the advent of numerical analysis and computer availability, it was believed that
a shift from observation and experience to numerical methods based on physics was possible.
Numerous models were developed but none with reasonable predictive capability. In the 1990s
this changed based on work done in Canada (Kumaran, M., Mitalas, G. and Bomberg, M.; 1994)
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and Sweden (Viitanen, H., and A. Ritschkoff; 1991). These models were principally research
tools rather than design tools. Work done in Germany in 2000 changed the modeling status quo
(Kiinzel, H.; 2002). However, such design models were limited to mass assemblies typical to
Europe. North American assemblies are hollow, multi layered, and dominated by three
dimensional air flow networks that have proven problematic to modeling efforts.

The dominant European model has proven to be attractive to North American practitioners.
WUFTI is popular despite its inability to provide reasonable predictive outcomes unless used by
an experienced sophisticated user who already “knows” the correct outcome. In fact, despite the
sophistication of the numerical analysis, available research is still dominated by experiment. We
still must “build it, wet it and watch it.” Then, the observed outcomes are used to “tune”
available models. The field remains phenomenologically based, as there is yet no widely
accepted theory of combined heat and moisture flow.

1.3 Relevance to Building America’s Goals

Given the Building America goals of reducing home energy use by 30%-50% (compared to 2009
energy codes for new homes and pre-retrofit energy use for existing homes), this research is an
effort to reduce the first cost of wall assemblies. Many low-cost high-performance wall
assemblies are not being used due to inappropriate failure criteria (ASHRAE Standard 160;
ASHRAE 2009) linked with inappropriate hygrothermal modeling.

This work also falls under the category of “2.0 Risk Reduction and Minimization,” from the
document FY 2014 Residential Energy System Research Needs (NREL 2013).

1.4 Cost-Effectiveness

The goal of this research is to encourage the use of lower cost moisture safe assemblies that are
known to work based on field experience and first principles, which are currently being avoided
due to inappropriate failure criteria caused by inappropriate hygrothermal modeling.

1.5 Tradeoffs and Other Benefits

Higher cost moisture safe assemblies will be replaced with lower cost moisture safe assemblies.
As the modeling becomes more predictive, a reduction in the reliance on field experimentation is
likely to occur, reducing the time between innovation and deployment.
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2 Simulation Background and Approach

2.1 Model Calibration, Failure Criteria, and Wall Selection

Existing literature and engineering judgment based on experience provided the necessary
information to calibrate the WUFI software models (ASHRAE Handbook of Fundamentals,
ASHRAE 2013; Shi, X., Schumacher, C., Burnett, E., 2004; Straube, J.F., Burnett, E.,
VanStraaten, R., Schumacher, C., 2004; Straube, J.; J. Smegal, 2009). Similarly, existing
literature and engineering judgment based on experience was used to analyze and report on the
failure thresholds and criteria for above grade walls (Hutcheon & Handegord, 1983; Kumaran,
M., Mitalas, G. and Bomberg, M. 1994; Straube, J. and Burnett, E.; 2005; Timusk, C., 2005;
Viitanen, H., and A. Ritschkoff, 1991).

The (a) calibration of the software models and (b) analysis of the failure thresholds/criteria was
accomplished by first understanding above-grade walls with historically successful performance
(Karagiozis, 2004; Kiinzel, H. 2002; Ojanen, T., Kohonen, R. and Kumaran, M., 1994). Walls
with historically successful performance were identified by the participants of a Building
America Expert Meeting (Ueno and Lstiburek 2014) and by Building Science Corporation dialog
with the home building industry and code authorities.

A round of WUFI files was generated based on these identified common wall assemblies. The
behavior of these assemblies was examined, to determine appropriate failure criteria based on
this historic record. The intent was to counter much of the common, existing modeling that
shows that walls known to perform well (historically) do not meet various failure criteria
(ASHRAE Standard 160, ASHRAE, 2009). Each of these wall assemblies is accompanied by a
short case study, that explains the history of the wall, how it works (hygrothermally), the
function of each component (air barrier vs. vapor retarder vs. water control), and the thought
process behind the design.

All simulations were run using WUFI (Warme und Feuchte instationér) 1-D software, version
5.3. Simulations were run for a period of three years, in order to reduce the effect of initial
conditions (moisture stored in building materials), and to show longer-term trends of moisture
accumulation or drying.

2.2 Simulated Wall Assemblies

Three rounds of simulation work were conducted (Round One, Two and Three); each successive
round of simulations was used to “tune” successive rounds. Wall assembly variables included
standard framing (2x4) vs. advanced framing (2x6) (i.e., R-13 vs. R-19 insulation), plywood
sheathing vs. OSB sheathing, vapor retarders (Class II) vs. vapor barriers (Class I), and unvented
and drained claddings vs. vented and drained claddings.

The three Rounds change the “base wall” (cavity insulation level and interior vapor control):

e Round One is based on a 2x4 (R-13 fiberglass batt insulation) wall, with interior vapor
control provided by an interior Kraft facer on the fiberglass batt insulation.

¢ Round Two substitutes 2x6 framing (R-19 fiberglass batt insulation) for the 2x4 framing
of Round One.
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Round Three changes Round Two by replacing the Kraft facer with 6 mil polyethylene.

Within each round, a series of changes are made to the cladding types and exterior structural
sheathing, for six wall combinations per round, as discussed below:

Wall 1 (Wood Siding-Ply): latex-painted wood siding, over plywood sheathing

Wall 2 (Vinyl Siding-Ply): changes Wall 1 by substituting vinyl siding for wood siding;
highlighted in red in Table 1, Table 2, and Table 3.

Wall 3 (Vinyl-OSB): changes Wall 2 by substituting OSB sheathing for plywood;
highlighted in green in Table 1, Table 2, and Table 3.

Wall 4 (Brick-OSB): changes Wall 3 by replacing vinyl siding with a drained and
ventilated brick cladding; highlighted in blue in Table 1, Table 2, and Table 3.

Wall 5 (Stucco-OSB): changes Wall 4 by replacing brick with hard-coat stucco, applied
over two layers of #15 felt; highlighted in blue in Table 1, Table 2, and Table 3.

Wall 6 (Vented Stucco-OSB): changes Wall 5 by replacing stucco with stucco applied
over a spacer or “breather” mesh between two layers of #15 felt; highlighted in blue in
Table 1, Table 2, and Table 3. The reasoning behind this spacer mesh in promoting
ventilation drying is discussed by Lstiburek (2008).

All walls use #15 asphalt saturated kraft paper (building paper) as a water control layer/drainage
plane, fiberglass stud bay insulation, and interior gypsum board with latex paint.

All simulations were performed in six climate zones (see 2.3 Climate Locations), resulting in 36
simulations (6 walls x 6 climates) per Round.

The full listing of the wall assembly components are shown in Table 1 (Round One), Table 2
(Round Two) and Table 3 (Round Three).
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Table 1: Round One (2x4 Framing, R-13 Fiberglass) wall assemblies

Wall 1 (Wood Wall 2 (Vinyl Wall 3 Wall 4 Wall 5 Wall 6 (Vented
Siding-Ply) Siding-Ply) (Vinyl-OSB) (Brick-OSB) (Stucco-OSB) Stucco-OSB)
Cladding latex painted wood vinyl siding vinyl siding brick veneer stucco stucco
siding #15 asphalt paper
polypropylene
drainage mat (% in)
Water Control #15 asphalt paper #15 asphalt paper #15 asphalt paper #15 asphalt paper #15 asphalt paper #15 asphalt paper
Layer (2 layers)
Structural plywood sheathing plywood sheathing OSB sheathing OSB sheathing OSB sheathing OSB sheathing
Sheathing
Framing 2x4 framing 2x4 framing 2x4 framing 2x4 framing 2x4 framing 2x4 framing
Cavity R-13 fiberglass batt ~ R-13 fiberglass batt ~ R-13 fiberglass batt ~ R-13 fiberglass batt ~ R-13 fiberglass batt ~ R-13 fiberglass batt
Insulation

Vapor Control

Interior Finish

Interior Finish

Kraft facer on Kraft facer on
fiberglass batt fiberglass batt
gypsum wall board ~ gypsum wall board

latex paint latex paint

Kraft facer on Kraft facer on
fiberglass batt fiberglass batt
gypsum wall board gypsum wall board

latex paint latex paint

Kraft facer on
fiberglass batt
gypsum wall board

latex paint

Kraft facer on
fiberglass batt
gypsum wall board

latex paint
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Table 2: Round Two (2x6 Framing, R-19 Fiberglass) wall assemblies

Wall 1 (Wood Wall 2 (Vinyl Wall 3 Wall 4 Wall 5 Wall 6 (Vented
Siding-Ply) Siding-Ply) (Vinyl-OSB) (Brick-OSB) (Stucco-OSB) Stucco-OSB)
Cladding latex painted wood vinyl siding vinyl siding brick veneer stucco stucco
siding #15 asphalt paper
polypropylene
drainage mat (% in)
Water Control #15 asphalt paper #15 asphalt paper #15 asphalt paper #15 asphalt paper #15 asphalt paper #15 asphalt paper
Layer (2 layers)
Structural plywood sheathing plywood sheathing OSB sheathing OSB sheathing OSB sheathing OSB sheathing
Sheathing
Framing 2x6 framing 2x6 framing 2x6 framing 2x6 framing 2x6 framing 2x6 framing
Cavity R-19 fiberglass batt ~ R-19 fiberglass batt ~ R-19 fiberglass batt ~ R-19 fiberglass batt ~ R-19 fiberglass batt ~ R-19 fiberglass batt
Insulation

Vapor Control

Interior Finish

Interior Finish

Kraft facer on Kraft facer on
fiberglass batt fiberglass batt
gypsum wall board ~ gypsum wall board

latex paint latex paint

Kraft facer on Kraft facer on
fiberglass batt fiberglass batt
gypsum wall board gypsum wall board

latex paint latex paint

Kraft facer on
fiberglass batt
gypsum wall board

latex paint

Kraft facer on
fiberglass batt
gypsum wall board

latex paint
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Table 3: Round Three (2x6 Framing, R-19 Fiberglass, Kraft Facing—Polyethylene) wall assemblies

Wall 1 (Wood Wall 2 (Vinyl Wall 3 Wall 4 Wall 5 Wall 6 (Vented
Siding-Ply) Siding-Ply) (Vinyl-OSB) (Brick-OSB) (Stucco-OSB) Stucco-OSB)
Cladding latex painted wood vinyl siding vinyl siding brick veneer stucco stucco
siding #15 asphalt paper
polypropylene
drainage mat (% in)
Water Control #15 asphalt paper #15 asphalt paper #15 asphalt paper #15 asphalt paper #15 asphalt paper #15 asphalt paper
Layer (2 layers)
Structural plywood sheathing plywood sheathing OSB sheathing OSB sheathing OSB sheathing OSB sheathing
Sheathing
Framing 2x6 framing 2x6 framing 2x6 framing 2x6 framing 2x6 framing 2x6 framing
Cavity R-19 fiberglass batt ~ R-19 fiberglass batt ~ R-19 fiberglass batt ~ R-19 fiberglass batt ~ R-19 fiberglass batt ~ R-19 fiberglass batt
Insulation

Vapor Control
Interior Finish

Interior Finish

Polyethylene Polyethylene

gypsum wall board gypsum wall board

latex paint latex paint

Polyethylene Polyethylene

gypsum wall board gypsum wall board

latex paint latex paint

Polyethylene
gypsum wall board

latex paint

Polyethylene
gypsum wall board

latex paint
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2.3 Climate Locations
All of the wall assemblies were simulated in the climate locations shown in Table 4 and Figure 1,
to understand the climate sensitivity of these assemblies.

WUFI database weather files were used for each climate, selecting the cold year data, which is
the worst case for interior-sourced interstitial condensation.

Table 4: Simulation geographic locations with climate zones

City, State IECC Climate Zone Climate Description
Minneapolis, MN 6A Very Cold
Chicago, IL S5A Cold
Kansas City, MO 4A Mixed-Humid
Seattle, WA 4C Marine
Atlanta, GA 3A Mixed-Humid
Houston, TX 2A Hot-Humid

Marine (C) Dry (B) Moist (A) 4

Brattleboro
Cincinnatti

Philadelphia
Wilmington
Washington, D.C.
Durham
Raleigh
Warm-Humid Below
Red Line

Wilmington

Charleston

") Jacksonville

2

New (1 Orlando
Orleans

1

Figure 1: DOE climate zone map with simulated cities highlighted

2.4 Interior Boundary Conditions

Interior conditions have a significant effect on hygrothermal simulations, especially when air
leakage from the interior is simulated (see 2.5 Drainage Cavity and Stud Bay Cavity
Ventilation). Interior temperature was varied as a sine wave in all climates, set at 75°F +£2°F
(73° to 77°F), with the peak in early August (Figure 2).
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Figure 2: Interior temperature and RH boundary conditions for Chicago (left) and Seattle (right)

Interior RH levels were also set as a seasonal sine wave (Figure 2). However, interior climate
conditions vary by climate region; mixed- and hot-humid climates have higher interior RHs than
cold and very cold climates. The resulting sine wave minimum and maximum values are shown
in Table 5; the RH maximum is set for mid-August.

Table 5: Simulation locations with climate zones and interior RH levels

City, State CZ Average RH Minimum Maximum
Minneapolis, MN 6A 45% 30% 60%
Chicago, IL 5A 45% 30% 60%
Kansas City, MO 4A 45% 30% 60%
Seattle, WA 4C 57% 50% 65%
Atlanta, GA 3A 55% 40% 70%
Houston, TX 2A 55% 40% 70%

2.5 Drainage Cavity and Stud Bay Cavity Ventilation

Most of the claddings are designed as drained and ventilated cavities, which allow outside
airflow behind the cladding to provide drying of rain wetting of the cladding. This ventilation
airflow also bypasses vapor-impermeable materials (such as vinyl siding), thus allowing outward
drying of the backup wall.

This ventilation is represented in the WUFI simulation by using an air space (left-most “Air
layer” in Figure 3), and providing air change with exterior air in this air space. Ventilation rates
were selected based on Straube and Burnett (2005), and are presented in Table 6 (“Cladding
Ventilation”) as air changes per hour (ACH, in units of 1/h). Note that vinyl siding is very air
leaky, resulting in the high (200) air change; ventilated brick cavities have a much lower (10)
rate. The conventional stucco wall (no ventilation) has no cladding ventilation (which
contributes to moisture issues associated with this cladding, per Lstiburek 2008). The vented
stucco was modeled at 10 ACH.

10
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Figure 3: WUFI cross-section (Round 1 - Wall 3) showing ventilation air spaces
In addition, stud wall cavities are seldom built in a completely airtight manner. This leakage
connects the stud bay cavity with both exterior and interior environments. To simulate the effect
of this air leakage, small amounts of both exterior air and interior air (10 ACH respectively) were
added in a layer inboard of the sheathing, as shown in Figure 3 and Table 6.

Table 6: Cladding and stud bay ventilation rates, in air changes per hour

Sheathing Sheathing
Cladding Ventilation Ventilation
Ventilation (1/h) (Exterior) (1/h) (Interior) (1/h)

Wall 1 (Wood Siding-Ply) 20 10 10
Wall 2 Vinyl Siding-Ply) 200 10 10
Wall 3 (Vinyl-OSB) 200 10 10
Wall 4 (Brick-OSB) 10 10 10
Wall 5§ (Stucco-OSB) none 10 10
Wall 6 (Vented Stucco-OSB) 10 10 10

The ventilation rates are also provided in Appendix D: WUFI Source, Sinks.

11
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2.6 Bulk Water Leakage

In all cases, bulk water was introduced within the assembly, to simulate the effect of rainwater
exposure and penetration. First, in the exterior-side boundary conditions (Figure 4); 70% of the
incident rain adheres to the vertical wall surface and 30% runs off.

Exterior Surface (Left Side)
Heat Resistance [h ft* “F/Btu]

wind-dependent

Permeance [perm]

Short-Wave Radiation Absorptivity [ -]

Long-Wave Radiation Emissivity [ -]

Explicit Radiation Balance

Ground Short-Wave Reflectivity [ -]

03339 [ExtemalWall -~
’_
. |
| |No coating j

Mote: This setting does not affect rain absorption

|D.S |Stucc0. dark (aged) j

—

r~ Mote: This option takes radiative cooling due to long-wave
emission into account. Sensitive cases may require sufficienthy
accurate countemadiation data in the weather file.

|D.2 |Standard value j

———— e ————————

I Adhering Fraction of Rain [-]

|D.? |According to inclination and construction type j I

e e e s esesesssessssss=s======

Figure 4: WUFI exterior surface boundary conditions, rain adhesion highlighted

This rainwater was introduced within the assembly using source terms in WUFI, placed as
shown in Figure 5. A fraction of the adhering rainfall (1%) was introduced at the inner face of
the exterior surface (cladding), per the green circle in Figure 5. This reflects the fact that all
claddings leak some fraction of the incident water. In addition, a smaller fraction (0.01%) of the
incident rainfall was introduced behind the water control layer (drainage plane), per the orange
circle in Figure 5. This is intended to simulate water management failures that commonly occur

1n construction.
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Figure 5: WUFI cross-section (Round 1 - Wall 1) showing moisture source/sink terms

More specifics on bulk water sources are provided in Appendix D: WUFI Source, Sinks.
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2.7 Initial Moisture Conditions
In all cases, wood materials were assumed to meet building code required initial moisture
contents. For example, all wood based materials used should be below 20% MC by weight.

13
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3 Wall Simulation Results

This section presents the detailed descriptions of each of the six wall systems, with graphs of
sheathing moisture content (MC), which is a common metric for evaluating failure. A common
practice is to plot the MC of the entire sheathing layer; however, this value is simply the average
MC of the sheathing thickness. In reality, sheathing failures are typically associated with high
MCs on one face or another—for instance, the interior sheathing face for interior-sourced
interstitial condensation, or the exterior face for rain leakage. Therefore, the sheathing was
divided into three layers, and the MC of the innermost 1/8 in. (0.125 in.), as shown in red in
Figure 6, is plotted.
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Figure 6: WUFI cross-section (Round 1 - Wall 1) showing sheathing MC interior layer

The original WUFI files will all be available for download for examination and further
simulations.

It is important to note that interpreting the results of modeling has been problematic. As noted
earlier, wall assemblies that have performed well historically in various climate zones “fail”
when standardized moisture failure criteria such as that presented in ASHRAE Standard 160 are
applied. As such, the primary performance criteria or failure criteria establishing historic
performance is moisture content of the exterior sheathing - More specifically, historic reports of
decay, based on observation of large numbers of wall assemblied (“buildings”) over a decade or
longer.

3.1 Round One (2x4 Framing, R-13 Fiberglass)
The first round of wall systems has 2x4 framing with R-13 fiberglass batt.

3.1.1 Wall 1 (Wood Siding-Ply)
Table 7 shows the layers in the first wall of the Round One (Figure 7) from exterior to interior
and their respective functions.

Table 7: Round 1 — Wall 1 (Wood Siding-Ply) layers

Layer Function
Latex painted wood siding provides exterior finish for aesthetics
Asphalt saturated Kraft paper (building functions as air and water control layer
paper)
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Plywood sheathing provides structural support
2x4 framing provides structural support
Kraft-faced R-13 fiberglass batt functions as thermal and vapor control layer
Gypsum wall board provides interior finish
Latex paint functions as vapor drive throttle

Wood siding with latex
paint

Asphalt saturated paper
(building paper)

Plywood

2x4 wood frame wall

R-13 fiberglass

|
|
|
|
|
|
|
|
|
|
|
|
I
|
Kraft facing :
|

Gypsum board
|

Latex paint

-
Y

Figure 7: Round 1 - Wall 1 (Wood Siding-Ply) configuration

WUFI simulations are run on this wall on both north and south orientations in 6 climate
locations; Figure 8 to Figure 13 show the moisture content graphs of the interior side of the
exterior wall sheathing, over a period of 3 years.
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Figure 8: Round 1 - Wall 1 sheathing MC in Houston (Zone 2A), north (left) and south (right)
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Figure 9: Round 1 - Wall 1 sheathing MC in Atlanta (Zone 3A), north (left) and south (right)
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Figure 10: Round 1 - Wall 1 sheathing MC in Kansas City (Zone 4A), north (left) and south (right)
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Figure 11: Round 1 - Wall 1 sheathing MC in Seattle (Zone 4C), north (left) and south (right)

16



U.S. DEPARTMENT OF

Energy Efficiency &

EN ERGY Renewable Energy

Water Content [Ib/ft?]

Water Content [Ib/ft3]

Plywood high Plywood high
7 18.69 6
6 16.02 5 a 13.35
5 1335 2 54 I 10.68
’ T E
g 8
€ £
o Q
o o
4 / 10.68 & 23 i | son
] 1 L s ]
= H
8.01 2 5.34
5 34 1 #:57
3/1/2014  9/1/2014  3/1/2016  9/1/2016  3/1/2016  9/1/2016 3/1/2014  9/1/2014  3/1/2015  9/1/2015  3/1/2016  9/1/2016

Figure 12: Round 1 - Wall 1 sheathing MC in Chicago (Zone 5A), north (left) and south (right)
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Figure 13: Round 1 - Wall 1 sheathing MC in Minneapolis (Zone 6A), north (left) and south (right)

3.1.2 Wall 2 (Vinyl Siding-Ply)
Table 8 shows the layers in the second wall of the Round One (Figure 14) from exterior to
interior and their respective functions.

Table 8: Round 1 — Wall 2 (Vinyl Siding-Ply) layers

Layer Function
Vinyl siding provides exterior finish for aesthetics
Asphalt saturated Kraft paper (building functions as air and water control layer
paper)
Plywood sheathing provides structural support
2x4 framing provides structural support
Kraft-faced R-13 fiberglass batt functions as thermal and vapor control layer
Gypsum wall board provides interior finish
Latex paint functions as vapor drive throttle
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Vinyl siding >

Asphalt saturated paper
(building paper)

Plywood

2x4 wood frame wall

R-13 fiberglass

Kraft facing

Gypsum board
[

Latex paint

—_— e 5
\d

Figure 14: Round 1 - Wall 2 (Vinyl Siding-Ply) configuration

WUFI simulations are run on this wall on both north and south orientations in 6 climate zones;
Figure 15 to Figure 20 show the moisture content graphs of the inner face of wall sheathing over
a period of 3 years.
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Figure 15: Round 1 - Wall 2 sheathing MC in Houston (Zone 2A), north (left) and south (right)
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Figure 16: Round 1 - Wall 2 sheathing MC in Atlanta (Zone 3A), north (left) and south (right)
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Figure 17: Round 1 - Wall 2 sheathing MC in Kansas City (Zone 4A), north (left) and south (right)
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Figure 18: Round 1 - Wall 2 sheathing MC in Seattle (Zone 4C), north (left) and south (right)
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Figure 19: Round 1 - Wall 2 sheathing MC in Chicago (Zone 5A), north (left) and south (right)
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Figure 20: Round 1 - Wall 2 sheathing MC in Minneapolis (Zone 6A), north (left) and south (right)

3.1.3 Wall 3 (Vinyl-OSB)
Table 9 shows the layers in the third wall of the Round One (Figure 21) from exterior to interior
and their respective functions.
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Table 9: Round 1 — Wall 3 (Vinyl-OSB) layers

Layer Function

Vinyl siding provides exterior finish for aesthetics

Asphalt saturated Kraft paper (building functions as air and water control layer
paper)
OSB sheathing provides structural support
2x4 framing provides structural support
Kraft-faced R-13 fiberglass batt functions as thermal and vapor control layer
Gypsum wall board provides interior finish
Latex paint functions as vapor drive throttle
Vinyl siding .|

Asphalt saturated paper
(building paper)

OSB sheathing

2x4 wood frame wall

R-13 fiberglass

|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kraft facing :
|

Gypsum board
|

Latex paint

—_ e e 5

Figure 21: Round 1 - Wall 3 (Vinyl-OSB) configuration

WUFI simulations are run on this wall on both north and south orientations in 6 climate zones;
Figure 22 to Figure 27 show the moisture content graphs of the inner face of wall sheathing over
a period of 3 years.

Oriented Strand Board low Orlented Strend Board low
13.93 13.93

11.14

IS

11.14

ent [M.%]
ent [M.-%]

Water Content [Ib/ft7]
Water Content [Ib/ft*]
w
3
8

er Conte
/ster Cont

Wat

©
I
I
I

8.96

I

5.57

2.79

3172014 9112014 3172015 9112015 3/1/2016 IZo16 " 3112014 9112014 31112015 91172015 3172016 9117201

Figure 22: Round 1 - Wall 3 sheathing MC in Houston (Zone 2A), north (left) and south (right)
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Figure 23: Round 1 - Wall 3 sheathing MC in Atlanta (Zone 3A), north (left) and south (right)
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Figure 24: Round 1 - Wall 3 sheathing MC in Kansas City (Zone 4A), north (left) and south (right)
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Figure 25: Round 1 - Wall 3 sheathing MC in Seattle (Zone 4C), north (left) and south (right)
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Figure 26: Round 1 - Wall 3 sheathing MC in Chicago (Zone 5A), north (left) and south (right)
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Figure 27: Round 1 - Wall 3 sheathing MC in Minneapolis (Zone 6A), north (left) and south (right)

3.1.4 Wall 4 (Brick-OSB)
Table 10 shows the layers in the fourth wall of the Round One (Figure 28) from exterior to
interior and their respective functions.

Table 10: Round 1 — Wall 4 (Brick-OSB) layers

Layer Function

Brick veneer provides exterior finish for aesthetics

Asphalt saturated Kraft paper (building functions as air and water control layer
paper)
OSB sheathing provides structural support
2x4 framing provides structural support
Kraft-faced R-13 fiberglass batt functions as thermal and vapor control layer
Gypsum wall board provides interior finish
Latex paint functions as vapor drive throttle

Brick veneer

Asphalt saturated paper
(building paper)

0SB sheathing

NSNS

2x4 wood frame wall

e

\i

R-13 fiberglass

NN

|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kraft facing :
|

_T'
I

Gypsum board
I

N

Latex paint |/ / |

Figure 28: Round 1 - Wall 4 (Brick-OSB) configuration
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WUFI simulations are run on this wall on both north and south orientations in 6 climate zones;
Figure 29 to Figure 34 show the moisture content graphs of the inner face of wall sheathing over
a period of 3 years.
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Figure 29: Round 1 - Wall 4 sheathing MC in Houston (Zone 2A), north (left) and south (right)
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Figure 30: Round 1 - Wall 4 sheathing MC in Atlanta (Zone 3A), north (left) and south (right)
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Figure 31: Round 1 - Wall 4 sheathing MC in Kansas City (Zone 4A), north (left) and south (right)
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Figure 32: Round 1 - Wall 4 sheathing MC in Seattle (Zone 4C), north (left) and south (right)
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Figure 33: Round 1 - Wall 4 sheathing MC in Chicago (Zone 5A), north (left) and south (right)

Orlented Strand Board low

Orlented Strand Board low

" M

!

I
8

o]

il

3

Water Content [Ib/ft]

V"’

/

Water Content [M.-%]

11.14

3172014 01112014 3172015

9/1/2015

3172016

917201

5 57

.29

19.5

18.71

Water Content [Ib/ft”]
o

YAl

| -
13.93

[M.-%]

e

i

Water Cor

11.14

32014

01112014

31/2015

91172015

3172016

5.57

9/1/2016

Figure 34: Round 1 - Wall 4 sheathing MC in Minneapolis (Zone 6A), north (left) and south (right)
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3.1.5 Wall 5 (Stucco-OSB)
Table 11 shows the layers in the fifth wall of the Round One (Figure 35) from exterior to interior
and their respective functions.

Table 11: Round 1 — Wall 5 (Stucco-OSB) layers

Layer Function
Stucco provides exterior finish for aesthetics
2 layers asphalt saturated Kraft paper functions as air and water control layer
(building paper)
OSB sheathing provides structural support
2x4 framing provides structural support
Kraft-faced R-13 fiberglass batt functions as thermal and vapor control layer
Gypsum wall board provides interior finish
Latex paint functions as vapor drive throttle

Stucco

Two layers asphalt
saturated paper (building

paper)

0SB sheathing

2x4 wood frame wall

\/

l
R-13 fiberglass :
|

Kraft facing H
Gypsum board H
|
|
Latex paint

Figure 35: Round 1 - Wall 5 (Stucco-OSB) configuration

WUFI simulations are run on this wall on both north and south orientations in 6 climate zones;
Figure 36 to Figure 41show the moisture content graphs of the inner face of wall sheathing over
a period of 3 years.
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Figure 36: Round 1 - Wall 5 sheathing MC in Houston (Zone 2A), north (left) and south (right)
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Figure 37: Round 1 - Wall 5 sheathing MC in Atlanta (Zone 3A), north (left) and south (right)
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Figure 38: Round 1 - Wall 5 sheathing MC in Kansas City (Zone 4A), north (left) and south (right)
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Figure 39: Round 1 - Wall 5 sheathing MC in Seattle (Zone 4C), north (left) and south (right)
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Figure 40: Round 1 - Wall 5 sheathing MC in Chicago (Zone 5A), north (left) and south (right)
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Figure 41: Round 1 - Wall 5 sheathing MC in Minneapolis (Zone 6A), north (left) and south (right)

3.1.6 Wall 6 (Vented Stucco-OSB)

Table 12 shows the layers in the sixth wall of the Round One (Figure 42) from exterior to interior
and their respective functions.
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Table 12: Round 1 — Wall 6 (Vented Stucco-OSB) layers

Layer Function
Stucco provides exterior finish for aesthetics
1 layer asphalt saturated Kraft paper provides backing for stucco
(building paper)
Polypropylene drainage mat (’z inch) provides drainage and ventilation gap
Another layer asphalt saturated Kraft functions as air and water control layer
paper
(building paper)
OSB sheathing provides structural support
2x4 framing provides structural support
Kraft-faced R-13 fiberglass batt functions as thermal and vapor control layer
Gypsum wall board provides interior finish
Latex paint functions as vapor drive throttle
Stucco >

|
|
Drainage mat between

two layers asphalt
saturated paper (building

paper)
OSB sheathing

2x4 wood frame wall

AVAV

R-13 fiberglass

Y

Kraft facing
I
Gypsum board -
] |
Latex paint S

Figure 42: Round 1 - Wall 6 (Vented Stucco-OSB) configuration

WUPFI simulations are run on this wall on both north and south orientations in 6 climate zones;
Figure 43 to Figure 48 show the moisture content graphs of the inner face of wall sheathing over
a period of 3 years.
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Figure 43: Round 1 - Wall 6 sheathing MC in Houston (Zone 2A), north (left) and south (right)
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Figure 44: Round 1 - Wall 6 sheathing MC in Atlanta (Zone 3A), north (left) and south (right)

Orlented Strand Board low

W
y

Water Content [Ib/ft]

.36

I5.57

3172014

9112014

3172015

l2.79

9/1/2015 3/1/2016 917201

Water Content [M.-%]

Weater Cantent [Ib/ft*]

Orlented Strand Board low

13.93

Py

i\

M

11.14

8
Water Content [M.-%]

5.57

32014

01112014

31/2015

91172015

3172016

2.
9117201

Figure 45: Round 1 - Wall 6 sheathing MC in Kansas City (Zone 4A), north (left) and south (right)
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Figure 46: Round 1 - Wall 6 sheathing MC in Seattle (Zone 4C), north (left) and south (right)
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Figure 47: Round 1 - Wall 6 sheathing MC in Chicago (Zone 5A), north (left) and south (right)
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Figure 48: Round 1 - Wall 6 sheathing MC in Minneapolis (Zone 6A), north (left) and south (right)
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3.2 Round Two (2x6 Framing, R-19 Fiberglass)
In the second round, 2x4 framing with R-13 Kraft faced fiberglass batts is replaced with 2x6
framing with R-19 Kraft faced fiberglass batt in each of the wall systems.

3.2.1 Wall 1 (Wood Siding-Ply)
Table 13 shows the layers in the first wall of the Round Two (Figure 49) from exterior to interior
and their respective functions.

Table 13: Round 2 — Wall 1 (Wood Siding-Ply) layers

Layer Function
Latex painted wood siding provides exterior finish for aesthetics
Asphalt saturated Kraft paper (building functions as air and water control layer
paper)
Plywood sheathing provides structural support
2x6 framing provides structural support
Kraft-faced R-19 fiberglass batt functions as thermal and vapor control layer
Gypsum wall board provides interior finish
Latex paint functions as vapor drive throttle

Wood siding with latex
paint

Asphalt saturated paper
(building paper)

Plywood

2x6 wood frame wall

R-19 fiberglass

Kraft facing

Gypsum board |

P ———f——

Latex paint [1

Figure 49: Round 2 - Wall 1 (Wood Siding-Ply) configuration

WUFI simulations are run on this wall on both north and south orientations in 6 climate
locations; Figure 50 to Figure 55 show the moisture content graphs of the inner face of wall
sheathing over a period of 3 years.
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Figure 50: Round 2 - Wall 1 sheathing MC in Houston (Zone 2A), north (left) and south (right)
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Figure 51: Round 2 - Wall 1 sheathing MC in Atlanta (Zone 3A), north (left) and south (right)
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Figure 52: Round 2 - Wall 1 sheathing MC in Kansas City (Zone 4A), north (left) and south (right)

32



U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

Plywood high

136

iy

iy

i

/

18.69

16.02 %

Content [M.

%]

t

Water Content [Ib/#]
%_

3112014

01172014

3172015

9172015

3172016

13.95 s

10.68

oriizoie

Plywood high

Water Content [Ib/ft”]

Figure 53: Round 2 - Wall 1 sheathing MC in Seattle (Zone 4C), north (left) and south (right)
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Figure 54: Round 2 - Wall 1 sheathing MC in Chicago (Zone 5A), north (left) and south (right)
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Figure 55: Round 2 - Wall 1 sheathing MC in Minneapolis (Zone 6A), north (left) and south (right)
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3.2.2 Wall 2 (Vinyl Siding-Ply)

Table 14 shows the layers in the second wall of the Round Two (Figure 56) from exterior to
interior and their respective functions.

Table 14: Round 2 — Wall 2 (Vinyl Siding-Ply) layers

Layer Function
Vinyl siding provides exterior finish for aesthetics
Asphalt saturated Kraft paper (building functions as air and water control layer
paper)
Plywood sheathing provides structural support
2x6 framing provides structural support
Kraft-faced R-19 fiberglass batt functions as thermal and vapor control layer
Gypsum wall board provides interior finish
Latex paint functions as vapor drive throttle
Vinyl siding >/

Asphalt saturated paper
(building paper)

Plywood

2x6 wood frame wall

R-19 fiberglass

|
|
|
|
|
|
|
|
I
I
I
|
|
|
|
Kraft facing |
|

Gypsum board |

Latex paint

—_— e e

Figure 56: Round 2 - Wall 2 (Vinyl Siding-Ply) configuration

WUFI simulations are run on this wall on both north and south orientations in 6 climate zones;
Figure 57 to Figure 62 show the moisture content graphs of the inner face of wall sheathing over
a period of 3 years.
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Figure 57: Round 2 - Wall 2 sheathing MC in Houston (Zone 2A), north (left) and south (right)
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Figure 58: Round 2 - Wall 2 sheathing MC in Atlanta (Zone 3A), north (left) and south (right)
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Figure 59: Round 2 - Wall 2 sheathing MC in Kansas City (Zone 4A), north (left) and south (right)
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Figure 60: Round 2 - Wall 2 sheathing MC in Seattle (Zone 4C), north (left) and south (right)
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Figure 61: Round 2 - Wall 2 sheathing MC in Chicago (Zone 5A), north (left) and south (right)
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Figure 62: Round 2 - Wall 2 sheathing MC in Minneapolis (Zone 6A), north (left) and south (right)
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3.2.3 Wall 3 (Vinyl-OSB)
Table 15 shows the layers in the third wall of the Round Two (Figure 63) from exterior to
interior and their respective functions.

Table 15: Round 2 — Wall 3 (Vinyl-OSB) layers

Layer Function

Vinyl siding provides exterior finish for aesthetics

Asphalt saturated Kraft paper (building functions as air and water control layer
paper)
OSB sheathing provides structural support
2x6 framing provides structural support
Kraft-faced R-19 fiberglass batt functions as thermal and vapor control layer
Gypsum wall board provides interior finish
Latex paint functions as vapor drive throttle
Vinyl siding >/

Asphalt saturated paper
(building paper)

OSB sheathing

2x6 wood frame wall

R-19 fiberglass

|
|
|
|
|
|
|
|
I
I
I
|
|
|
|
Kraft facing \
|

Gypsum board |

Latex paint

—_—_ g S 5
b

Figure 63: Round 2 - Wall 3 (Vinyl-OSB) configuration

WUFI simulations are run on this wall on both north and south orientations in 6 climate zones;
Figure 64 to Figure 69 show the moisture content graphs of the inner face of wall sheathing over
a period of 3 years.
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Figure 64: Round 2 - Wall 3 sheathing MC in Houston (Zone 2A), north (left) and south (right)
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Figure 65: Round 2 - Wall 3 sheathing MC in Atlanta (Zone 3A), north (left) and south (right)
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Figure 66: Round 2 - Wall 3 sheathing MC in Kansas City (Zone 4A), north (left) and south (right)
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Figure 67: Round 2 - Wall 3 sheathing MC in Seattle (Zone 4C), north (left) and south (right)
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Figure 68: Round 2 - Wall 3 sheathing MC in Chicago (Zone 5A), north (left) and south (right)
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Figure 69: Round 2 - Wall 3 sheathing MC in Minneapolis (Zone 6A), north (left) and south (right)

3.2.4 Wall 4 (Brick-OSB)
Table 16 shows the layers in the fourth wall of the Round Two (Figure 70) from exterior to
interior and their respective functions.

Table 16: Round 2 — Wall 4 (Brick-OSB) layers

Layer

Function

Brick veneer

Asphalt saturated Kraft paper (building
paper)

OSB sheathing

2x6 fr

aming

Kraft-faced R-19 fiberglass batt
Gypsum wall board
Latex paint

provides exterior finish for aesthetics
functions as air and water control layer

provides structural support
provides structural support
functions as thermal and vapor control layer
provides interior finish
functions as vapor drive throttle
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Figure 70: Round 2 - Wall 4 (Brick-OSB) configuration

WUFI simulations are run on this wall on both north and south orientations in 6 climate zones;
Figure 71 to Figure 76 show the moisture content graphs of the inner face of wall sheathing over
a period of 3 years.
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Figure 71: Round 2 - Wall 4 sheathing MC in Houston (Zone 2A), north (left) and south (right)
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Figure 72: Round 2 - Wall 4 sheathing MC in Atlanta (Zone 3A), north (left) and south (right)
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Figure 73: Round 2 - Wall 4 sheathing MC in Kansas City (Zone 4A), north (left) and south (right)
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Figure 74: Round 2 - Wall 4 sheathing MC in Seattle (Zone 4C), north (left) and south (right)
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Figure 75: Round 2 - Wall 4 sheathing MC in Chicago (Zone 5A), north (left) and south (right)
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Figure 76: Round 2 - Wall 4 sheathing MC in Minneapolis (Zone 6A), north (left) and south (right)
3.2.5 Wall 5 (Stucco-OSB)

Table 17 shows the layers in the fifth wall of the Round Two (Figure 77) from exterior to interior
and their respective functions.

Table 17: Round 2 — Wall 5 (Stucco-OSB) layers

Layer Function
Stucco provides exterior finish for aesthetics
2 layers asphalt saturated Kraft paper functions as air and water control layer
(building paper)
OSB sheathing provides structural support
2x6 framing provides structural support
Kraft-faced R-19 fiberglass batt functions as thermal and vapor control layer
Gypsum wall board provides interior finish
Latex paint functions as vapor drive throttle

Stucco

Two layers asphalt
saturated paper (building

paper)

OSB sheathing

2x6 wood frame wall

R-19 fiberglass

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kraft facing |
|

Gypsum board :

Latex paint

Figure 77: Round 2 - Wall 5 (Stucco-OSB) configuration
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WUFI simulations are run on this wall on both north and south orientations in 6 climate zones;
Figure 78 to Figure 83 show the moisture content graphs of the inner face of wall sheathing over
a period of 3 years.
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Figure 78: Round 2 - Wall 5 sheathing MC in Houston (Zone 2A), north (left) and south (right)
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Figure 79: Round 2 - Wall 5 sheathing MC in Atlanta (Zone 3A), north (left) and south (right)
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Figure 80: Round 2 - Wall 5 sheathing MC in Kansas City (Zone 4A), north (left) and south (right)
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Figure 81: Round 2 - Wall 5 sheathing MC in Seattle (Zone 4C), north (left) and south (right)
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Figure 82: Round 2 - Wall 5 sheathing MC in Chicago (Zone 5A), north (left) and south (right)
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Figure 83: Round 2 - Wall 5 sheathing MC in Minneapolis (Zone 6A), north (left) and south (right)

44



U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &
Renewable Energy

3.2.6 Wall 6 (Vented Stucco-OSB)

Table 18 shows the layers in the sixth wall of the Round Two (Figure 84) from exterior to

interior and their respective functions.

Table 18: Round 2 — Wall 6 (Vented Stucco-OSB) layers

Layer Function
Stucco provides exterior finish for aesthetics
1 layer asphalt saturated Kraft paper provides backing for stucco
(building paper)

Polypropylene drainage mat (%% in.)
Another layer asphalt saturated Kraft
paper (building paper)

OSB sheathing
2x6 framing
Kraft-faced R-19 fiberglass batt
Gypsum wall board
Latex paint

provides drainage and ventilation gap
functions as air and water control layer

provides structural support
provides structural support
functions as thermal and vapor control layer
provides interior finish
functions as vapor drive throttle

Stucco

Drainage mat between

two layers asphalt

saturated paper (building

paper)
OSB sheathing

2x6 wood frame wall

R-19 fiberglass

- TAVAVAVAVAVAVAVAVAVAVAVAY

Kraft facing

Gypsum board

Latex paint

Figure 84: Round 2 - Wall 6 (Vented Stucco-OSB) configuration

WUPFI simulations are run on this wall on both north and south orientations in 6 climate zones;
Figure 85 to Figure 90 show the moisture content graphs of the inner face of wall sheathing over

a period of 3 years.
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Figure 85: Round 2 - Wall 6 sheathing MC in Houston (Zone 2A), north (left) and south (right)
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Figure 86: Round 2 - Wall 6 sheathing MC in Atlanta (Zone 3A), north (left) and south (right)
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Figure 87: Round 2 - Wall 6 sheathing MC in Kansas City (Zone 4A), north (left) and south (right)
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Figure 88: Round 2 - Wall 6 sheathing MC in Seattle (Zone 4C), north (left) and south (right)
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Figure 89: Round 2 - Wall 6 sheathing MC in Chicago (Zone 5A), north (left) and south (right)
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Figure 90: Round 2 - Wall 6 sheathing MC in Minneapolis (Zone 6A), north (left) and south (right)
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3.3 Round Three (2x6 Framing, R-13 Fiberglass, Kraft Facing—Polyethylene)
In the third round, the round two walls are redone replacing Kraft facing with 6 mil polyethylene.

3.3.1 Wall 1 (Wood Siding-Ply)
Table 19 shows the layers in the first wall of the Round Three (Figure 91) from exterior to
interior and their respective functions.

Table 19: Round 3 — Wall 1 (Wood Siding-Ply) layers

Layer Function
Latex painted wood siding provides exterior finish for aesthetics
Asphalt saturated Kraft paper (building functions as air and water control layer
paper)
Plywood sheathing provides structural support
2x6 framing provides structural support
R-19 fiberglass batt functions as thermal control layer
6 mil polyethylene functions as vapor control layer
Gypsum wall board provides interior finish
Latex paint functions as vapor drive throttle

Wood siding with latex
paint

Asphalt saturated paper
(building paper)

Plywood

2x6 wood frame wall

R-19 unfaced fiberglass

6 mil polyethylene

Gypsum board

Latex paint

i e e e
Y

==

Figure 91: Round 3 - Wall 1 (Wood Siding-Ply) configuration

WUFI simulations are run on this wall on both north and south orientations in 6 climate
locations; Figure 92 to Figure 97 show the moisture content graphs of the inner face of wall
sheathing over a period of 3 years.
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Figure 92: Round 3 - Wall 1 sheathing MC in Houston (Zone 2A), north (left) and south (right)
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Figure 93: Round 3 - Wall 1 sheathing MC in Atlanta (Zone 3A), north (left) and south (right)
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Figure 94: Round 3 - Wall 1 sheathing MC in Kansas City (Zone 4A), north (left) and south (right)
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Figure 95: Round 3 - Wall 1 sheathing MC in Seattle (Zone 4C), north (left) and south (right)
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Figure 96: Round 3 - Wall 1 sheathing MC in Chicago (Zone 5A), north (left) and south (right)
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Figure 97: Round 3 - Wall 1 sheathing MC in Minneapolis (Zone 6A), north (left) and south (right)
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3.3.2 Wall 2 (Vinyl Siding-Ply)

Table 20 shows the layers in the second wall of the Round Three (Figure 98) from exterior to
interior and their respective functions.

Table 20: Round 3 — Wall 2 (Vinyl Siding-Ply) layers

Layer Function
Vinyl siding provides exterior finish for aesthetics
Asphalt saturated Kraft paper (building functions as air and water control layer
paper)
Plywood sheathing provides structural support
2x6 framing provides structural support
R-19 fiberglass batt functions as thermal control layer
6 mil polyethylene functions as vapor control layer
Gypsum wall board provides interior finish
Latex paint functions as vapor drive throttle
Vinyl siding >/

Asphalt saturated paper
(building paper)

Plywood /

=

2X6 wood frame wall

R-19 unfaced fiberglass h/]
"/7 =

Figure 98: Round 3 - Wall 2 (Vinyl Siding-Ply)configuration

6 mil polyethylene

Gypsum board

Latex paint

WUPFI simulations are run on this wall on both north and south orientations in 6 climate zones;
Figure 99 to Figure 104 show the moisture content graphs of the inner face of wall sheathing
over a period of 3 years.
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Figure 99: Round 3 - Wall 2 sheathing MC in Houston (Zone 2A), north (left) and south (right)
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Figure 100: Round 3 - Wall 2 sheathing MC in Atlanta (Zone 3A), north (left) and south (right)
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Figure 101: Round 3 - Wall 2 sheathing MC in Kansas City (Zone 4A), north (left) and south (right)
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Figure 102: Round 3 - Wall 2 sheathing MC in Seattle (Zone 4C), north (left) and south (right)
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Figure 103: Round 3 - Wall 2 sheathing MC in Chicago (Zone 5A), north (left) and south (right)

Plywood high Plywood high
1.36
= + 13.35
6 16.02
£ ¥ E | | 1008 %
g z g | z
= : S é
£ H H
8 8 8 S
® E s {f-18.01 E
H H I E4
I- I- 10.68
'H ( ‘k ( ‘k ’( T T LA il
s5.34 2.87
3112014 9/1/2014 3/1/2015 9/1/2015 37172016 9/1/201! 3/1/2014 /172014 3172015 9/172015 312016 9/17201!

Figure 104: Round 3 - Wall 2 sheathing MC in Minneapolis (Zone 6A), north (left) and south (right)
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3.3.3 Wall 3 (Vinyl-OSB)
Table 21 shows the layers in the third wall of the Round Three (Figure 105) from exterior to
interior and their respective functions.

Table 21: Round 3 — Wall 3 (Vinyl-OSB) layers

Layer Function
Vinyl siding provides exterior finish for aesthetics
Asphalt saturated Kraft paper (building functions as air and water control layer
paper)
OSB sheathing provides structural support
2x6 framing provides structural support
R-19 fiberglass batt functions as thermal control layer
6 mil polyethylene functions as vapor control layer
Gypsum wall board provides interior finish
Latex paint functions as vapor drive throttle
Vinyl siding >/

Asphalt saturated paper
(building paper)

OSB sheathing

2x6 wood frame wall

R-19 unfaced fiberglass

6 mil polyethylene

Gypsum board

Latex paint

—_—— e St 5
1

==

Figure 105: Round 3 - Wall 3 (Vinyl-OSB) configuration

WUFI simulations are run on this wall on both north and south orientations in 6 climate zones;
Figure 106 to Figure 111 show the moisture content graphs of the inner face of wall sheathing
over a period of 3 years.
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Figure 106: Round 3 - Wall 3 sheathing MC in Houston (Zone 2A), north (left) and south (right)
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Figure 107: Round 3 - Wall 3 sheathing MC in Atlanta (Zone 3A), north (left) and south (right)
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Figure 108: Round 3 - Wall 3 sheathing MC in Kansas City (Zone 4A), north (left) and south (right)
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Figure 109: Round 3 - Wall 3 sheathing MC in Seattle (Zone 4C), north (left) and south (right)
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Figure 110: Round 3 - Wall 3 sheathing MC in Chicago (Zone 5A), north (left) and south (right)
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Figure 111: Round 3 - Wall 3 sheathing MC in Minneapolis (Zone 6A), north (left) and south (right)
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3.3.4 Wall 4 (Brick-OSB)
Table 22 shows the layers in the fourth wall of the Round Three (Figure 112) from exterior to
interior and their respective functions.

Table 22: Round 3 — Wall 4 (Brick-OSB) layers

Layer Function
Brick veneer provides exterior finish for aesthetics
Asphalt saturated Kraft paper (building functions as air and water control layer
paper)
OSB sheathing provides structural support
2x6 framing provides structural support
R-19 fiberglass batt functions as thermal control layer
6 mil polyethylene functions as vapor control layer
Gypsum wall board provides interior finish
Latex paint functions as vapor drive throttle

Brick veneer

)

/

Asphalt saturated paper
(building paper)

[

OSB sheathing

NN

2x6 wood frame wall

A
R-19 unfaced fiberglass | | >
6 mil polyethylene %
Gypsum board W

Latex paint

NN

==

Figure 112: Round 3 - Wall 4 (Brick-OSB) configuration

WUFI simulations are run on this wall on both north and south orientations in 6 climate zones;
Figure 113 to Figure 118 show the moisture content graphs of the inner face of wall sheathing
over a period of 3 years.
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Figure 113: Round 3 - Wall 4 sheathing MC in Houston (Zone 2A), north (left) and south (right)
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Figure 114: Round 3 - Wall 4 sheathing MC in Atlanta (Zone 3A), north (left) and south (right)

Oriented Strand Board low Oriented Strand Board low

.86 13.93
.29 4 11.14
g ¥ E 5
2 S 2 =
5 £ g z
2 ¢ ' l 1871 & 2 5 838 2
3 W & 8 3
5 ] - ]
g 8 8
H H H H
4 11.14 + — = 557
s5.57 2.79
37112014 9/1/2014 3/1/2015 9/1/2015 37172016 9/1/201! 3/1/2014 /172014 3172015 9/172015 3172018 9/17201

Figure 115: Round 3 - Wall 4 sheathing MC in Kansas City (Zone 4A), north (left) and south (right)
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Figure 116: Round 3 - Wall 4 sheathing MC in Seattle (Zone 4C), north (left) and south (right)
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Figure 117: Round 3 - Wall 4 sheathing MC in Chicago (Zone 5A), north (left) and south (right)
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Figure 118: Round 3 - Wall 4 sheathing MC in Minneapolis (Zone 6A), north (left) and south (right)
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3.3.5 Wall 5 (Stucco-OSB)

Table 23 shows the layers in the fifth wall of the Round Three (Figure 119) from exterior to
interior and their respective functions.

Table 23: Round 3 — Wall 5 (Stucco-OSB) layers

Layer Function
Stucco provides exterior finish for aesthetics
2 layers asphalt saturated Kraft paper functions as air and water control layer
(building paper)
OSB sheathing provides structural support
2x6 framing provides structural support
R-19 fiberglass batt functions as thermal control layer
6 mil polyethylene functions as vapor control layer
Gypsum wall board provides interior finish
Latex paint functions as vapor drive throttle
Stucco >l

|

Two layers asphalt
saturated paper (building

paper)

OSB sheathing

2x6 wood frame wall

R-19 unfaced fiberglass

6 mil polyethylene

Gypsum board

Latex paint
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Figure 119: Round 3 - Wall 5 (Stucco-OSB) configuration

WUPFI simulations are run on this wall on both north and south orientations in 6 climate zones;
Figure 120 to Figure 125 show the moisture content graphs of the inner face of wall sheathing
over a period of 3 years.
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Figure 120: Round 3 - Wall 5 sheathing MC in Houston (Zone 2A), north (left) and south (right)
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Figure 121: Round 3 - Wall 5 sheathing MC in Atlanta (Zone 3A), north (left) and south (right)
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Figure 122: Round 3 - Wall 5 sheathing MC in Kansas City (Zone 4A), north (left) and south (right)
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Figure 123: Round 3 - Wall 5 sheathing MC in Seattle (Zone 4C), north (left) and south (right)
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Figure 124: Round 3 - Wall 5 sheathing MC in Chicago (Zone 5A), north (left) and south (right)
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Figure 125: Round 3 - Wall 5 sheathing MC in Minneapolis (Zone 6A), north (left) and south (right)
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3.3.6 Wall 6 (Vented Stucco-OSB)

Table 24 shows the layers in the sixth wall of the Round Three (Figure 126) from exterior to

interior and their respective functions.

Table 24: Round 3 — Wall 6 (Vented Stucco-OSB) layers

Layer Function
Stucco provides exterior finish for aesthetics
1 layer asphalt saturated Kraft paper provides backing for stucco
(building paper)

Polypropylene drainage mat (' in.)
Another layer asphalt saturated Kraft
paper (building paper)

OSB sheathing
2x6 framing
R-19 fiberglass batt
6 mil polyethylene
Gypsum wall board
Latex paint

provides drainage and ventilation gap
functions as air and water control layer

provides structural support
provides structural support
functions as thermal control layer
functions as vapor control layer
provides interior finish
functions as vapor drive throttle

Stucco

Drainage mat between

two layers asphalt

saturated paper (building

paper)

OSB sheathing
2x6 wood frame wall

R-19 unfaced fiberglass
6 mil polyethylene

Gypsum board

AR

AVAVAVAVAVAVAVAVATAVAVAV,"

Latex paint

!

(3 |

Figure 126: Round 3 - Wall 6 (Vented Stucco-OSB) configuration

WUPFI simulations are run on this wall on both north and south orientations in 6 climate zones;
Figure 127 to Figure 132 show the moisture content graphs of the inner face of wall sheathing

over a period of 3 years.
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Figure 127: Round 3 - Wall 6 sheathing MC in Houston (Zone 2A), north (left) and south (right)
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Figure 128: Round 3 - Wall 6 sheathing MC in Atlanta (Zone 3A), north (left) and south (right)
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Figure 129: Round 3 - Wall 6 sheathing MC in Kansas City (Zone 4A), north (left) and south (right)
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Figure 130: Round 3 - Wall 6 sheathing MC in Seattle (Zone 4C), north (left) and south (right)
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Figure 131: Round 3 - Wall 6 sheathing MC in Chicago (Zone 5A), north (left) and south (right)
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Figure 132: Round 3 - Wall 6 sheathing MC in Minneapolis (Zone 6A), north (left) and south (right)
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4 Conclusions

The Technical Report describes the modeling of typical wall assemblies that have performed
well historically in various climate zones. The WUFI (Wdrme und Feuchte instationdr) software
(Version 5.3) model was used. A library of input data and results are provided. The provided
information can be generalized for application to a broad population of houses, within the limits
of existing experience.

The WUFI software model was calibrated or “tuned” using wall assemblies with historically
successful performance. The primary performance criteria or failure criteria establishing historic
performance was moisture content of the exterior sheathing — More specifically, historic reports
of decay, based on observation of large numbers of wall assemblies (“buildings”) over a decade
or longer. The primary “tuning” parameters (simulation inputs) were airflow and specifying
appropriate material properties. “Rational” hygric loads were established based on experience —
specifically rain wetting and interior moisture (RH levels). The “tuning” parameters were
limited or bounded by published data or experience.

The WUFI software model is a one-dimensional combined heat and moisture flow model.
Typical building assemblies are multi-layer systems with complex three-dimensional airflow
pathways. One-dimensional combined heat and moisture flow models have proven difficult to
use for analysis in these types of assemblies due to the complexity added by the airflow
component.

One challenge for a one-dimensional combined heat and moisture flow model is to address the
rain and airflow components.

Rain is a significant moisture load: modeling the rain transport mechanism—a three dimensional
phenomena in a multi-layer system—adds more complexity. The WUFI rain modeling inputs
had the following assumptions:

e 30 percent of this water bounces off the wall and 70 percent is retained on the wall

e [ percent of the 70 percent (the “retained water’) is assumed to penetrate to the back side
of the cladding

e 1 percent of the 1 percent is assumed to penetrate the water control layer and enter into
the sheathing.

WUFI software is capable of modeling cladding ventilation, by introducing interior or exterior
condition air into an airspace within the assembly. This allows for explicit (and correct)
modeling of ventilated rainscreen behaviors, including vinyl siding (bypass of vapor-
impermeable vinyl material with airflow) or brick veneer construction.

This airflow model within WUFT also allows the analysis of “through the assembly airflow” (i.e.,
air leakage through typical imperfect assemblies). This flow can be approximated as follows.
Two arbitrary 5 mm (3/16 inch) airspaces are created at the interface of the cavity insulation and
the structural sheathing. One airspace is coupled to the interior, simulating moves air-
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transported moisture from the interior to the interior face of the exterior sheathing. The other
airspace is coupled to the exterior, and simulates air leakage from the exterior into the cavity.

Running the rainwater and airflow “tuned” WUFTI software model generated the library of input
data and results presented. The results agree with historical experience of these assemblies
constructed in the climate zones modeled.

The WUFI templates provided with this report supply useful information resources to new or
less-experienced users. The files present various custom settings that will help avoid results that
will require overly conservative enclosure assemblies. Overall, better material data, consistent
initial assumptions, and consistent inputs among practitioners will improve the quality of WUFI
modeling, and improve the level of sophistication in the field.
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Appendix A: WUFI Component Assemblies

Round One — Wall 1 (Wood Siding-Ply)
ExtEriQ_r_ Interior

s gy
o

& &
|| R A E A e

0.0893 /45 {28 30197 3.5 0.039.492
il s S S TR S,

Thickness [in]

(O - Monitor positions

Z/8 - Heat/Moisture source/sink positions

Materials:

I - *(BSC) Latex Paint & Oil Primer for Wood Siding 0.039 in
[ ] -*Southern Yellow Pine 0.375in
[ ]-"Southern Yellow Pine 0.125 in
[ ] -*AirLayer 5 mm; without additional moisture capacity 0.197 in
I - Situminous Paper (#15 Felt) 0.028 in
[ - Plywood high 0.125 in
[ - Plywood high 025 in
[ - Plywood high 0.125in
[ ]-*AirLayer5mm 0.197 in
[ ]-*AirLayer5mm 0.197 in
[ ] -*Fibre Glass {unlocked) 3.51n
I - (BSC) Kraft Paper 0.039 in
[ ]-*Gypsum Board (USA) 0.492 in

Sd-Value Int. [perm]: 10,0

Total Thickness: 5.69 in
R-Value: 18.03 h ft2 °F/Btu
U-Value: 0.052 Btu/h ft*°F
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Round One — Wall 2 (Vinyl Siding-Ply)

Exterior

3.5

Interior

0.%39.492

Thickness [in]
(O - Monitor positions

/A - Heat/Moisture source/sink positions

Materials:

[ ]-*vinyl Siding (no vapor perm)

[ ]-AirLayer 5 mm; without additional moisture capacity
[ ]-*AirLayer 5 mm; without additional moisture capacity

I - -5iiuminous Paper (#15 Felt)
[ - Plywood high

[ - Piywood high

[ - Plywood high

[ ]-*ArrLayer5mm

[ ]-*ArrLayer5mm

[ ]-~Fibre Glass {unlocked)
I - <(5sC) Kraft Paper
[ ]-*Gypsum Board (USA)

Sd-Value Int. [perm]: 10,0

Total Thickness: 5.24 in
R-Value: 17.56 h ft* °F/Btu
U-Value: 0.054 Btu/h ft=°F
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Round One — Wall 3 (Vinyl-OSB)

Exterior Interior

3.5 0.%39.492

Thickness [in]
(O - Monitor positions

/A - Heat/Moisture source/sink positions

Materials:

[ ]-*vinyl Siding (no vapor perm) 0.059 in
[ ]-AirLayer 5 mm; without additional moisture capacity 0.028 in
[ ]-*AirLayer 5 mm; without additional moisture capacity 0.197 in
I - :5iiuminous Paper (#15 Felt) 0.028 in
[ |- Oriented Strand Board low 0.125 in
[ |- Oriented Strand Board low 0.25in
[ |- Oriented Strand Board low 0.125 in

[ ]-*ArrLayer5mm 0.197 in
[ ]-*ArrLayer5mm 0.197 in
[ ]-~Fibre Glass {unlocked) 3.5in
I - <(5sC) Kraft Paper 0.039 in
[ ]-*Gypsum Board (USA) 0.492 in

Sd-Value Int. [perm]: 10,0

Total Thickness: 5.24 in
R-Value: 17.69 h ft2 °F/Btu
U-Value: 0.053 Btu/h ft=°F
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Round One — Wall 4 (Brick-OSB)

Exterior Interior

1 (.

5 3.5 ; 0.98@%@%7 3.5 0.%‘3@9%

Thickness [in]

(O - Monitor positions

/A - Heat/Moisture source/sink positions

Materials:

I - solid Brick Masonry 3.5in
|:| - Air Layer 25 mm; without additional moisture capacity 0.984 in
I - 5ituminous Paper (#15 Felt) 0.028 in

[ ] -Oriented Strand Board low 0.125 in
|:| - Oriented Strand Board low 025in
[ ] - Oriented Strand Board low 0.125 in
[ ]-*AirLayer5mm 0.197 in
[ ]-*ArrLayer5mm 0.197 in
[ ]-*Fibre Glass {unlocked) 3.5in
I - (B5C) Kraft Paper 0.039 in
[ ]-*Gypsum Board (USA) 0.492 in

Sd-Value Int. [perm]: 10,0

Total Thickness: 9.44 in
R-Value: 18.6 h ft2 °F/Btu
U-Value: 0.051 Btu/h ft*°F
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Round One — Wall 5 (Stucco-OSB)

Exterior Interior

Il NN

0.039 0.787 Qi 3897 2 0.039.492
o Vo] BERRSRE S0 g,

Thickness [in]

7
p—

(O - Monitor positions

/A - Heat/Moisture source/sink positions

Materials:

I - #(BSC) Latex Paint & Qil Primer for Wood Siding 0.039 in
[ ]-RegularPortland Stucco 0.787 in
I - Bituminous Paper (#15 Felt) Outer 0.028 in
I - -5iiuminous Paper (#15 Felt) Inner 0.028 in
[ |- Oriented Strand Board low 0.125 in
[ |- Oriented Strand Board low 0.25 in
[ |- Oriented Strand Board low 0.125 in
[ ]-*ArrLayer5mm 0.197 in
[ ]-*ArrLayer5mm 0.197 in
[ ]-~Fibre Glass {unlocked) 3.5in
I - <(5sC) Kraft Paper 0.039 in
[ ]-*Gypsum Board (USA) 0.492 in

Sd-Value Int. [perm]: 10,0

Total Thickness: 5.81 in
R-Value: 17.23 h ft2 °F/Btu
U-Value: 0.055 Btu/h ft*°F
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Round One — Wall 6 (Vented Stucco-OSB)

Exterior Interior

ey gt | oy AU 1 l

0.%39 0.787 0.%99@%}2;&&339&7 3.5 0.%3{9492#)

Thickness [in]

7
p—

(O - Monitor positions

/A - Heat/Moisture source/sink positions

Materials:

I - *(BSC) Latex Paint & Qil Primer for Wood Siding 0.039 in
[ ]-Regular Portland Stucco 0.787 in
I - ‘Bituminous Paper (#15 Felt) Outer 0.028 in
[ ] -AirLayer 10 mm; without additional moisture capacity 0.394 in
I - Siiuminous Paper (#15 Felt) Inner 0.028 in
[ ] - Oriented Strand Board low 0.125 in
[ ] - Oriented Strand Board low 0.25 in
[ ] - Oriented Strand Board low 0.125 in
[ ]-*AirLayer5mm 0.197 in
[ ]-*AirLayer5mm 0.197 in
[ ]-*Fibre Glass {unlocked) 3.5in
I - *(BSC) Kraft Paper 0.039 in
[ ]-*Gypsum Board (USA) 0.492 in

Sd-Value Int. [perm]: 10,0

Total Thickness: 6.2 in
R-Value: 18.04 h ft2 °F/Btu
U-Value: 0.052 Btu/h ft2°F
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Round Two — Wall 1 (Wood Siding-Ply)

Exterior Interior

T

0.%3919%?
Thickness [in]

(OO - Monitor positions
/A - Heat/Moisture source/sink positions
Materials:
I - *(BSC) Latex Paint & Qil Primer for Wood Siding 0.039 in
[ ]-*Southern Yellow Pine 0.375 in
[ ]-*Southern Yellow Pine 0.125 in
[ ] -=*AirLayer 5 mm; without additional moisture capacity 0.197 in
I - Situminous Paper (#15 Felt) 0.028 in
[ - Plywood high 0.125 in
[ - Plywood high 0.25in
[ ] - Plywood high 0.125 in
[ ]-*AirLayer5mm 0.197 in
[ ]-*AirLayer5mm 0.197 in
[ ]-*Fibre Glass {unlocked) 5:5iin
I - *(BSC) Kraft Paper 0.039 in
[ ]-*Gypsum Board (USA) 0.492 in

Sd-Value Int. [perm]: 10,0

Total Thickness: 7.68 in
R-Value: 26.29 h ft2 °F/Btu
U-Value: 0.037 Btu/h ftz°F
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Round Two — Wall 2 (Vinyl Siding-Ply)

Exterior Interior

5.5 0.%39492#)

Thickness [in]
(O - Monitor positions

/A - Heat/Moisture source/sink positions

Materials:

[ ]-*vinyl Siding (no vapor perm) 0.059 in
[ ]-AirLayer 5 mm; without additional moisture capacity 0.028 in
[ ]-*AirLayer 5 mm; without additional moisture capacity 0.197 in
I - -5iiuminous Paper (#15 Felt) 0.028 in
[ - Plywood high 0.125 in
[ - Piywood high 0.25 in
[ - Plywood high 0.125 in
[ ]-*ArrLayer5mm 0.197 in
[ ]-*ArrLayer5mm 0.197 in
[ ]-~Fibre Glass {unlocked) 5.5in
I - <(5sC) Kraft Paper 0.039 in
[ ]-*Gypsum Board (USA) 0.492 in

Sd-Value Int. [perm]: 10,0

Total Thickness: 7.24 in
R-Value: 25.82 h ft* °F/Btu
U-Value: 0.037 Btu/h ft=°F
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Round Two — Wall 3 (Vinyl-OSB)

Exterior Interior

i 1l e e i 0 I

oy ogm

Thickness [in]

(O - Monitor positions

/A - Heat/Moisture source/sink positions

Materials:

[ ]-*vinyl Siding (no vapor perm) 0.059 in
[ ]-AirLayer 5 mm; without additional moisture capacity 0.028 in
[ ]-*AirLayer 5 mm; without additional moisture capacity 0.197 in
I - :5iiuminous Paper (#15 Felt) 0.028 in
[ |- Oriented Strand Board low 0.125 in
[ |- Oriented Strand Board low 0.25in
[ |- Oriented Strand Board low 0.125 in
[ ]-*ArrLayer5mm 0.197 in
[ ]-*ArrLayer5mm 0.197 in
[ ]-~Fibre Glass {unlocked) 5.5in
I - <(5sC) Kraft Paper 0.039 in
[ ]-*Gypsum Board (USA) 0.492 in

Sd-Value Int. [perm]: 10,0

Total Thickness: 7.24 in
R-Value: 25.95 h ft2 °F/Btu
U-Value: 0.037 Btu/h ft=°F

78




U.S. DEPARTMENT OF Energy Efﬁciency &

EN ERGY Renewable Energy

Round Two — Wall 4 (Brick-OSB)

Exterior Interior

0 AR

5 3.5 ; 0.9@%&?7 5.5 0.%

Thickness [in]

(O - Monitor positions

/A - Heat/Moisture source/sink positions

Materials:

I - solid Brick Masonry 3.5in
|:| - Air Layer 25 mm; without additional moisture capacity 0.984 in
I - 5ituminous Paper (#15 Felt) 0.028 in
[ ] -Oriented Strand Board low 0.125 in

|:| - Oriented Strand Board low 025in
[ ] - Oriented Strand Board low 0.125 in
[ ]-*AirLayer5mm 0.197 in
[ ]-*ArrLayer5mm 0.197 in
[ ]-*Fibre Glass {unlocked) 5.5in
I - (B5C) Kraft Paper 0.039 in
[ ]-*Gypsum Board (USA) 0.492 in

Sd-Value Int. [perm]: 10,0

Total Thickness: 11.44 in
R-Value: 26.85 h ft2 °F/Btu
U-Value: 0.036 Btu/h ft*°F
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Round Two — Wall 5 (Stucco-OSB)

Exterior Interior

0.'5;39).781])25{%7 5.5 0'%8919235

Thickness [in]

(O - Monitor positions

/A - Heat/Moisture source/sink positions

Materials:

I - #(BSC) Latex Paint & Qil Primer for Wood Siding 0.039 in
[ ]-RegularPortland Stucco 0.787 in
I - Bituminous Paper (#15 Felt) Outer 0.028 in
I - -5iiuminous Paper (#15 Felt) Inner 0.028 in
[ |- Oriented Strand Board low 0.125 in
[ |- Oriented Strand Board low 0.25 in
[ |- Oriented Strand Board low 0.125 in
[ ]-*ArrLayer5mm 0.197 in
[ ]-*ArrLayer5mm 0.197 in
[ ]-~Fibre Glass {unlocked) 5.5in
I - <(5sC) Kraft Paper 0.039 in
[ ]-*Gypsum Board (USA) 0.492 in

Sd-Value Int. [perm]: 10,0

Total Thickness: 7.81 in
R-Value: 25.49 h ft* °F/Btu
U-Value: 0.038 Btu/h ft=°F
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Round Two — Wall 6 (Vented Stucco-OSB)

Exterior Interior

iy

R & B B
LI IR S S E——. S =i

0.'239.78&%3%3@ 7 5.5 0.%699%

Thickness [in]

(O - Monitor positions

/A - Heat/Moisture source/sink positions

Materials:

I - *(BSC) Latex Paint & Qil Primer for Wood Siding 0.039 in
[ ]-Regular Portland Stucco 0.787 in
I - ‘Bituminous Paper (#15 Felt) Outer 0.028 in
[ ] -AirLayer 10 mm; without additional moisture capacity 0.394 in
I - Siiuminous Paper (#15 Felt) Inner 0.028 in
[ ] - Oriented Strand Board low 0.125 in
[ ] - Oriented Strand Board low 0.25 in
[ ] - Oriented Strand Board low 0.125 in
[ ]-*AirLayer5mm 0.197 in
[ ]-*AirLayer5mm 0.197 in
[ ]-*Fibre Glass {unlocked) 5:5iin
I - *(BSC) Kraft Paper 0.039 in
[ ]-*Gypsum Board (USA) 0.492 in

Sd-Value Int. [perm]: 10,0

Total Thickness: 8.2 in
R-Value: 26.29 h ft2 °F/Btu
U-Value: 0.037 Btu/h ftz°F

81




U.S. DEPARTMENT OF Energy Ef'fICIenCy &

ENERGY Renewable Energy

Round Three — Wall

Exterior

1 (Wood Siding-Ply)

Interior

[ RRERN

5.5 0.008192
T

Thickness [in]

(O - Monitor positions

/A - Heat/Moisture source/sink positions

b

Materials:

I - *(BSC) Latex Paint & Qil Primer for Wood Siding 0.039 in
[ ]-*Southern Yellow Pine 0.375 in
[ ]-*Southern Yellow Pine 0.125 in
[ ] -=*AirLayer 5 mm; without additional moisture capacity 0.197 in
I - Situminous Paper (#15 Felt) 0.028 in
[ - Plywood high 0.125 in
[ - Plywood high 0.25in
[ ] - Plywood high 0.125 in
[ ]-*AirLayer5mm 0.197 in
[ ]-*AirLayer5mm 0.197 in
[ ]-*Fibre Glass {unlocked) 5:5iin
I - vapor retarder (0.1perm) 0.006 in
[ ]-*Gypsum Board (USA) 0.492 in

Sd-Value Int. [perm]: 10,0
Total Thickness: 7.66 in

R-Value: 26.28 h ft*

°F/Btu

U-Value: 0.037 Btu/h ft*°F
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Round Three — Wall 2 (Vinyl Siding-Ply)

Exterior

Interior

(O - Monitor positions

Materials:

[ - Plywood high
[ - Piywood high
[ - Plywood high
[ ]-*ArrLayer5mm
[ ]-*ArrLayer5mm
[ ]-~Fibre Glass {unlocked)
I - vapor retarder (0.1perm)

5bh 0.(106’-192
¢ %
Thickness [in]

/A - Heat/Moisture source/sink positions
[ ]-*vinyl Siding (no vapor perm) 0.059 in
[ ]-AirLayer 5 mm; without additional moisture capacity 0.028 in
[ ]-*AirLayer 5 mm; without additional moisture capacity 0.197 in
I - -5iiuminous Paper (#15 Felt) 0.028 in
0.1251n
0.251n
0.1251n
0.197 in
0.197 in
55in
0.006 in
0.492 in

[ ]-*Gypsum Board (USA)

Sd-Value Int. [perm]: 10,0

Total Thickness: 7.2 in
R-Value: 25.8 h ft2 °F/Btu
U-Value: 0.037 Btu/h ft=°F
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U.S. DEPARTMENT OF Energy EfflClenCy &

EN ERGY Renewable Energy

Round Three — Wall 3 (Vinyl-OSB)

Exterior Interior

| | LA =SS S e = [ S

@ 197 555 0.008192
e 5

Thickness [in]

(O - Monitor positions

/A - Heat/Moisture source/sink positions

Materials:

[ ]-*vinyl Siding (no vapor perm) 0.059 in
[ ]-AirLayer 5 mm; without additional moisture capacity 0.028 in
[ ]-*AirLayer 5 mm; without additional moisture capacity 0.197 in
I - :5iiuminous Paper (#15 Felt) 0.028 in
[ |- Oriented Strand Board low 0.125 in
[ |- Oriented Strand Board low 0.25in
[ |- Oriented Strand Board low 0.125 in

[ ]-*ArrLayer5mm 0.197 in
[ ]-*ArrLayer5mm 0.197 in
[ ]-~Fibre Glass {unlocked) 5.5in
I - vapor retarder (0.1perm) 0.006 in
[ ]-*Gypsum Board (USA) 0.492 in

Sd-Value Int. [perm]: 10,0

Total Thickness: 7.2 in
R-Value: 25.94 h ft2 °F/Btu
U-Value: 0.037 Btu/h ft=°F
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U.S. DEPARTMENT OF Energy Efﬁciency &

EN ERGY Renewable Energy

Round Three — Wall 4 (Brick-OSB)

Exterior Interior

Il

A

3.5 0.984 7 hh 0.0060
5 Rl ool

Thickness [in]

(O - Monitor positions

/A - Heat/Moisture source/sink positions

Materials:

I - solid Brick Masonry 3.5in
|:| - Air Layer 25 mm; without additional moisture capacity 0.984 in
I - 5ituminous Paper (#15 Felt) 0.028 in

[ ] -Oriented Strand Board low 0.125 in
|:| - Oriented Strand Board low 025in
[ ] - Oriented Strand Board low 0.125 in
[ ]-*AirLayer5mm 0.197 in
[ ]-*ArrLayer5mm 0.197 in
[ ]-*Fibre Glass {unlocked) 5.5in
- - vapor retarder (0. 1perm) 0.006 in
[ ]-*Gypsum Board (USA) 0.492 in

Sd-Value Int. [perm]: 10,0

Total Thickness: 11.4 in
R-Value: 26.84 h ft2 °F/Btu
U-Value: 0.036 Btu/h ft*°F
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U.S. DEPARTMENT OF Energy EffIClenCy &

EN ERGY Renewable Energy

Round Three — Wall 5 (Stucco-OSB)

e e e e s
q m ‘
(T
3 5 5
L L0 SSRjl SR I e e e

0.039.78 7 5.5 0.008192
el Sl S5

Thickness [in]

(O - Monitor positions

/A - Heat/Moisture source/sink positions

Materials:

I - #(BSC) Latex Paint & Qil Primer for Wood Siding 0.039 in
[ ]-RegularPortland Stucco 0.787 in
I - Bituminous Paper (#15 Felt) Outer 0.028 in
I - -5iiuminous Paper (#15 Felt) Inner 0.028 in
[ |- Oriented Strand Board low 0.125 in
[ |- Oriented Strand Board low 0.25 in
[ |- Oriented Strand Board low 0.125 in

[ ]-*ArrLayer5mm 0.197 in
[ ]-*ArrLayer5mm 0.197 in
[ ]-~Fibre Glass {unlocked) 5.5in
I - vapor retarder (0.1perm) 0.006 in
[ ]-*Gypsum Board (USA) 0.492 in

Sd-Value Int. [perm]: 10,0

Total Thickness: 7.77 in
R-Value: 25.48 h ft* °F/Btu
U-Value: 0.038 Btu/h ft=°F
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U.S. DEPARTMENT OF Energy EffIClenCy &

EN ERGY Renewable Energy

Round Three — Wall 6 (Vented Stucco-OSB)

Exterior Interior

qill 1

= \I§II IQIHI \|;
LI LTI == e = H

0.39.78723. : 55 0.(?&92:%
Thickness [in]
(O - Monitor positions

/A - Heat/Moisture source/sink positions
Materials:
I - *(BSC) Latex Paint & Qil Primer for Wood Siding 0.039 in
[ ]-Regular Portland Stucco 0.787 in
I - ‘Bituminous Paper (#15 Felt) Outer 0.028 in
[ ] -AirLayer 10 mm; without additional moisture capacity 0.394 in
I - Siiuminous Paper (#15 Felt) Inner 0.028 in
[ ] - Oriented Strand Board low 0.125 in
[ ] - Oriented Strand Board low 025in
[ ] - Oriented Strand Board low 0.125 in
[ ]-*AirLayer5mm 0.197 in
[ ]-*AirLayer5mm 0.197 in
[ ]-*Fibre Glass {unlocked) 5:5iin
I - vapor retarder (0.1perm) 0.006 in
[ ]-*Gypsum Board (USA) 0.492 in

Sd-Value Int. [perm]: 10,0

Total Thickness: 8.17 in
R-Value: 26.28 h ft2 °F/Btu
U-Value: 0.037 Btu/h ftz°F
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U.S. DEPARTMENT OF Energy EffIClenCy &

EN ERGY Renewable Energy

Appendix B: WUFI Materials

Material: *(BSC) Latex Paint & Oil Primer for Wood Siding

Checking Input Data

Property Unit Value
Bulk density [Ib/ft3] 8,116
Porosity [ft311%] 0,001
Specific Heat Capacity, Dry [Biu/Ib°F] 0,549
Thermal Conductivity, Dry, 50°F [Btu/h f1°F] 1,329
Permeability [perm in] 0,035
Temp-dep. Thermal Cond. Supplement [Btu/h ft°F?] 0.0000640
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U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &
Renewable Energy

Material: *Southern Yellow Pine

Checking Input Data

Property Unit Value

Bulk density [Ib/ft?] 31,214
Porosity [f3/t] 0,858
Specific Heat Capacity, Dry [Biuflb°F] 0,449
Thermal Conductivity, Dry, 50°F [Btu/h ft°F] 0,069
Permeability [perm in] 0,074
Reference Water Content [Ibfit3] 3,883
Free Water Saturation [Ibf1t3] 18,728
Water Absorption Coefficient [Ibfin*s~0.5] 0.0000020
Temp-dep. Thermal Cond. Supplement [Btu/h ft°F?) 0.0000640
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U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &
Renewable Energy

Material: *Vinyl Siding (no vapor perm)

Checking Input Data

-10 10 30 50 70 90 110 130 150 170

Temperature [°F)

90

Property Unit Value
Bulk density [1B/1t%] 51.753
Porosity [f3/t] 0.001
Specific Heat Capacity, Dry [Biuflb°F] 0.549
Thermal Conductivity, Dry, 50°F [Btu/h f1°F] 0.098
Permeability [perm in] 0.001
Temp-dep. Thermal Cond. Supplement [Btu/h f1°F7] 0.000064
T 0.10 10200
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U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &
Renewable Energy

Material: Solid Brick Masonry

Checking Input Data

Property Unit Value
Bulk density [Ib/ft?] 118.613
Porosity [f3/t] 0.24
Specific Heat Capacity, Dry [Biuflb°F] 0.203
Thermal Conductivity, Dry, 50°F [Btu/h ft°F] 0347
Permeability [perm in] 12.88
Reference Water Content [Ibfit3] 1.124
Free Water Saturation [Ibf1t3] 11.861
Moisture-dep. Thermal Cond. Supplement [%6/M.-%] 15.0
Temp-dep. Thermal Cond. Supplement [Btu/h ft°F?) 0.000064
T 1.25 10225
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Energy Efficiency &
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Material: Regular Portland Stucco

Checking Input Data

Property Unit Value
Bulk density [Ib/ft?] 122.078
Porosity [f3/t] 0.225
Specific Heat Capacity, Dry [Biuflb°F] 020
Thermal Conductivity, Dry, 50°F [Btu/h ft°F] 0231
Permeability [perm in] 0.362
Temp-dep. Thermal Cond. Supplement [Btu/h f1°F7] 0.000064
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U.S. DEPARTMENT OF

Energy Efficiency &

EN ERGY Renewable Energy

Material: *Air Layer 5 mm; without additional moisture capacity

Checking Input Data

Property Unit Value
Bulk density [Ib/1t%] 0,081
Porosity [ft/Ft%] 0,999
Specific Heat Capacity, Dry [Biuflb°F] 0,239
Thermal Conductivity, Dry, 50°F [Btu/h f1°F] 0,027
Permeability [perm in] 163,038
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U.S. DEPARTMENT OF
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Energy Efficiency &
Renewable Energy

Material: Air Layer 25 mm; without additional moisture capacity

Checking Input Data

Property Unit Value
Bulk density [Ib/1t%] 0.081
Porosity [f*11%] 0.999
Specific Heat Capacity, Dry [Biuflb°F] 0.239
Thermal Conductivity, Dry, 50°F [Btu/h f1°F] 0.09
Permeability [perm in] 252.549
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U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &
Renewable Energy

Material: Air Layer 10 mm; without additional moisture capacity

Checking Input Data

Property Unit Value
Bulk density [1B/1t%] 0.031
Porosity [f3/t] 0.999
Specific Heat Capacity, Dry [Biuflb°F] 0.239
Thermal Conductivity, Dry, 50°F [Btu/h f1°F] 0.041
Permeability [perm in] 176.438
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U.S. DEPARTMENT OF
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Energy Efficiency &
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Material: *Bituminous Paper (#15 Felt)

Checking Input Data

-10 10 30 50 70 90 110 130 150 170

Temperature [°F)

96

Property Unit Value
Bulk density [1B/1t%] 44,636
Porosity [f3/t] 0,001
Specific Heat Capacity, Dry [Biuflb°F] 0,368
Thermal Conductivity, Dry, 50°F [Btu/h f1°F] 2,31
Permeability [perm in] 0,13
Temp-dep. Thermal Cond. Supplement [Btu/h f1°F7] 0.0000640
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U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &
Renewable Energy

Material: Plywood high

Checking Input Data

Property Unit Value

Bulk density [Ib/ft?] 37.457
Porosity [f3/t] 0.96
Specific Heat Capacity, Dry [Biuflb°F] 0449
Thermal Conductivity, Dry, 50°F [Btu/h ft°F] 0.058
Permeability [perm in] 03358
Reference Water Content [Ibfit3] 5.132
Free Water Saturation [Ibf1t3] 22.1
Water Absorption Coefficient [Ibfin*s~0.5] 0.000004
Temp-dep. Thermal Cond. Supplement [Btu/h ft°F?) 0.000064
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U.S. DEPARTMENT OF Energy Efﬂc]ency &

EN ERGY Renewable Energy

Material: Oriented Strand Board low

Checking Input Data

Property Unit Value
Bulk density [Ib/ft%] 35.896
Porosity [ft3/ft%] 0.8625
Specific Heat Capacity, Dry [Biuflb°F] 0449
Thermal Conductivity, Dry, 50°F [Btu/h ft°F] 0.049
Permeability [perm in] 0.109
Reference Water Content [Ibfit3] 4.451
Free Water Saturation [Ibf1t3] 20.82
Water Absorption Coefficient [Ibfin*s~0.5] 0.000003
Temp-dep. Thermal Cond. Supplement [Btu/h ft°F?) 0.000064
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U.S. DEPARTMENT OF

Energy Efficiency &

EN ERGY Renewable Energy

Material: *Air Layer 5 mm

Checking Input Data

Property Unit Value

Bulk density [Ib/1t%] 0,081
Porosity [f*11%] 0,999
Specific Heat Capacity, Dry [Biuflb°F] 0,239
Thermal Conductivity, Dry, 50°F [Btu/h f1°F] 0,027
Permeability [perm in] 163,038
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U.S. DEPARTMENT OF Energy EffIClenCy &

EN ERGY Renewable Energy

Material: *Fibre Glass (unlocked)

Checking Input Data

Property Unit Value

Bulk density [1B/1t%] 1,2
Porosity [f3/t] 0,99
Specific Heat Capacity, Dry [Biuflb°F] 0,201
Thermal Conductivity, Dry, 50°F [Btu/h f1°F] 0,02
Permeability [perm in] 99,0769
Temp-dep. Thermal Cond. Supplement [Btu/h f1°F7] 0.0000640
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U.S. DEPARTMENT OF Energy Effici

ency &

EN ERGY Renewable Energy

Material: *(BSC) Kraft Paper

Checking Input Data

Property Unit Value

Bulk density [1B/1t%] 74N
Porosity [f*11%] 0,6
Specific Heat Capacity, Dry [Biuflb°F] 0,368
Thermal Conductivity, Dry, 50°F [Btu/h f1°F] 0,243
Permeability [perm in] 0,035
Temp-dep. Thermal Cond. Supplement [Btu/h f1°F7] 0.0000640
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Material: vapor retarder (0.1perm)

Checking Input Data

Thermal Conductivity [Btu/h ft°F]
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Property Unit Value

Bulk density [1B/1t%] 8.1156
Porosity [f3/t] 0.001
Specific Heat Capacity, Dry [Biuflb°F] 0.5493
Thermal Conductivity, Dry, 50°F [Btu/h f1°F] 1.3289
Permeability [perm in] 0.0039
Temp-dep. Thermal Cond. Supplement [Btu/h f1°F7] 0.0000642
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Checking Input Data

-10 10 30 50 70 90 110 130 150 170

Temperature [°F)
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Property Unit Value

Bulk density [Ib/ft?] 53,064
Porosity [f3/t] 0,65
Specific Heat Capacity, Dry [Biuflb°F] 0,208
Thermal Conductivity, Dry, 50°F [Btu/h ft°F] 0,094
Permeability [perm in] 21,467
Moisture-dep. Thermal Cond. Supplement [%6/M.-%] 8,0
Temp-dep. Thermal Cond. Supplement [Btu/h f1°F7] 0.0000640
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Appendix C: WUFI Surface Transfer Coefficients

Exterior {Left Side}
Name Description Unit Value
Heat Resistance External Wall [h 1?2 °F/Btu] 0,3339
- includes long-wave radiation yes
Permeance No coating [perm] -
Short-Wave Radiation Absorptivity Stucco, dark {aged) [-] 06
Long-Wave Radiation Emissivity Stucco, dark {aged) [-] 09
Adhering Fraction of Rain According to inclination and copslructjon t§pé
Explicit Radiation Balance no
Interior {Right Side}
Name Description Unit Value
Heat Resistance External Wall [h f* °F/Btu] 0,7098
Permeance [perm] 10,0
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Appendix D: WUFI Source, Sinks
Wall 1 (Wood Siding-Ply)

*Southern Yellow Pine

Name Type
Rain Leak @ back of claddiddo/sture Source
Depth in Layer [in] 0,1181
Cut-Off at Free Water Saturation [Ib/t%] 18,728
Fraction of Driving Rain [%] 1

*Air Layer 5 mm; without additional moisture capacity

Name Type
Ventilation Air Change Source
Whole Layer
mix with air from left-hand side
Air Changes | nm | 20
Plywood high
Name Type
Rain Leak @ Shthg Moisture Source
Depth in Layer [in] 0,0118
Cut-Off at Free Water Saturation [Ib/t3] 22.1
Fraction of Driving Rain [%] 0.01
*Air Layer 5 mm
Name Type
Stud Space Ventilation Air Change Source
Whole Layer
mix with air from left-hand side
Air Changes | im0
*Air Layer 5 mm
Name Type
Air Leak Air Change Source
Whole Layer

mix with air from right-hand side

Air Changes om0
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Wall 2 (Vinyl Siding-Ply)
Air Layer 5 mm; without additional moisture capacity

Name Type
Rain Leak @ back of claddifdo/sture Source
Whole Layer
Cut-Off at Free Water Saturation [Ib/t%]
Fraction of Driving Rain [%] 1
*Air Layer 5 mm; without additional moisture capacity
Name Type
Ventilation Air Change Source
Whole Layer
mix with air from left-hand side
Air Changes | | 200
Plywood high
Name Type

Rain Leak @ Shthg

Morsture Source

Depth in Layer [in] 0,0118
Cut-Off at Free Water Saturation [Ib/ft%] 221
Fraction of Driving Rain [%] 0.01
*Air Layer 5 mm
Name Type

Stud Space Ventilation

Air Change Source

Whole Layer
mix with air from lefi-hand side
Air Changes | pmp | 10
*Air Layer 5 mm
Name Type

Air Leak

Air Change Source

Whole Layer

mix with air from right-hand side

Air Changes | | 10
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Air Layer 5 mm; without additional moisture capacity

Name

Type

Rain Leak @ back of cladd

ifdossture Source

Whole Layer

Cut-Off at Free Water Saturation [Ib/t%]
Fraction of Driving Rain [%] 1
*Air Layer 5 mm; without additional moisture capacity
Name Type
Ventilation Air Change Source
Whole Layer
mix with air from left-hand side
Air Changes | | 200
Oriented Strand Board low
Name Type
Rain Leak @ Shthg Moisture Source
Depth in Layer [in] 0,0118
Cut-Off at Free Water Saturation [Ib/ft%] 2082
Fraction of Driving Rain [%] 0.01
*Air Layer 5 mm
Name Type
Stud Space Ventilation Air Change Source
Whole Layer
mix with air from lefi-hand side
Air Changes | pmp | 10
*Air Layer 5 mm
Name Type
Air Leak Air Change Source
Whole Layer
mix with air from right-hand side
Air Changes | pmp | 10
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Name

Type

Rain Leak @ back of cladg

liidossiure Source

Start Depth in Layer [in] 3
End Depth in Layer [in] 3.5
Cut-Off at Free Water Saturation [Ibfit3] 11.861
Fraction of Driving Rain [%] 1
Air Layer 25 mm; without additional moisture capacity
Name Type
Ventilation Air Change Source
Whole Layer
mix with air from left-hand side
Air Changes | ] 10
Oriented Strand Board low
Name Type
Rain Leak @ Shthg Moisture Source
Depth in Layer [in] 0,0118
Cut-Off at Free Water Saturation [Ibft%] 20.82
Fraction of Driving Rain [%6] 0.01
*Air Layer 5 mm
Name Type
Stud Space Ventilation Air Change Source
Whole Layer
mix with air from left-hand side
Air Changes | [ 10
*Air Layer 5 mm
Name Type
Air Leak Air Change Source
Whole Layer
mix with air from right-hand side
Air Changes | (] 10
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Wall 5 (Stucco-OSB)
Regular Portland Stucco

Name Type
Rain Leak @ back of claddiddossiure Source
Start Depth in Layer [in] 05
End Depth in Layer [in] 0.75
Cut-Off at Free Water Saturation [Ib/ft%]
Fraction of Driving Rain [%] 1
Oriented Strand Board low
Name Type
Rain Leak @ Shthg Morsture Source
Depth in Layer [in] 0,0118
Cut-Off at Free Water Saturation [Ib/ft%] 20.82
Fraction of Driving Rain [%] 0.01
*Air Layer 5 mm
Name Type
Stud Space Ventilation Air Change Source
Whaole Layer
mix with air from left-hand side
Air Changes om0
*Air Layer 5 mm
Name Type
Air Leak Air Change Source
Whole Layer

mix with air from right-hand side

Air Changes om0
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Wall 6 (Vented Stucco-OSB)

Regular Portland Stucco

Name Type
Rain Leak @ back of claddiddo/sture Source
Start Depth in Layer [in] 0.5
End Depth in Layer [in] 0.75
Cut-Off at Free Water Saturation [Ib/1t?]
Fraction of Driving Rain [%] 1
Air Layer 10 mm; without additional moisture capacity
Name Type
Ventilation Air Change Source
Whole Layer
mix with air from left-hand side
Air Changes | [ 10
Oriented Strand Board low
Name Type
Rain Leak @ Shthg Moisture Source
Depth in Layer [in] 0,0118
Cut-Off at Free Water Saturation [Ib/Tt%] 20.82
Fraction of Driving Rain [%] 0.01
*Air Layer 5 mm
Name Type
Stud Space Ventilation Air Change Source
Whole Layer
mix with air from left-hand side
Air Changes | [ 10
*Alr Layer 5 mm
Name Type
Air Leak Air Change Source
Whole Layer
mix with air from right-hand side
Air Changes ) 10
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