Performance of Corrosion Inhibiting Admixtures in a Marine Environment

Ian N. Robertson
Craig Newtson
and
Many, many students

Funding provided by:
US Federal Highway Administration
and HI-DOT Research Board, Harbors Division

Kauai Hindu Temple 1000-year design life.

Project Timeline

- Initiated in 1998 by Craig Newtson
- Funded for 5 years by FHWA and Hi-DOT ('98-'03)
- Phase I Field study of existing piers
- Phase II Laboratory study of corrosion inhibitors
- Newtson left for New Mexico State Univ. (2003)
- Additional funding for 5 year field deployment ('04-'09)
- Phase III Field study of promising inhibitors
- Phase II and III studies terminated in 2012

Project Objectives

- Phase I Field testing at harbor piers to evaluate the effectiveness of corrosioninhibiting measures used in Hawaii
- Phase II Accelerated Laboratory testing to evaluate the effectiveness of proposed corrosion-inhibiting methods
- Phase III Compare corrosion-inhibiting methods under field conditions

Phase I Field Testing of Existing Piers

 Performed in 2000 by Craig Newtson and Merioni Bola

Phase I - Conclusions

- Corrosion was identified on all piers
- Increased DCI dosage decreased corrosion activity
- Epoxy coated reinforcing bars appeared to effectively combat corrosion

Research Report UHM/CE/00-01 by Bola and Newtson Available at:

www.cee.hawaii.edu

Corrosion Inhibitor Study

- Phase II: Accelerated Laboratory corrosion tests
- Phase III: Field Exposure specimens
- Field study results
- Conclusions
- Recommendations

Phase II - Laboratory Testing

- Accelerated Laboratory corrosion tests modified ASTM G 109-92
- Evaluating various corrosion inhibiting measures

Typical ASTM G 109 Test Specimen

Specimen Variables

Water-Cementitious Material Ratio

0.35 0.40 0.45

Aggregates

Halawa and Kapaa

- Paste Content
 - Varied from 28% to 35%
- Admixtures
 - Control specimens with no admixtures
 - Specimens with each of 8 admixtures intended to inhibit corrosion
- Reinforcing Steel
 - Uncoated Grade 60 deformed bars

Admixtures

- DAREX Corrosion Inhibitor (DCI)
- Rheocrete CNI
- Rheocrete 222+
- FerroGard 901
- Xypex Admix C-2000
- Latex-Modifier
- Silica Fume
- Fly Ash

UH Structures Laboratory Basement

100 different concrete mixtures

656 Individual specimens

Test Procedures

- Material Properties
 - Compressive Strength
 - Elastic Modulus
 - Permeability
- Initial and Final Conditions
 - Chloride Concentration Analysis
 - pH
- Readings every wet/dry cycle
 - Corrosion Current
 - Half-Cell Potential
 - Linear Polarization Resistance
 - Concrete Resistivity
- Autopsy
 - Split specimen at top reinforcement
 - Record extent of corrosion

Specimen Autopsy

- Record exterior appearance
- Half-cell readings over top reinforcement
- Core center of specimen
- Slice and grind samples for chloride tests at 0.5", 1", 1.5" and 2" below top surface
- Split at top reinforcement
- Record extent of corrosion
- pH measurement at top steel
- Discard specimen
- Repeat 656 times!

Laboratory Phase

- All specimens autopsied and recorded
- Two published reports
 - Kakuda, Robertson and Newtson (2005) UHM/CEE/05-04
 - Okunaga, Robertson and Newtson (2005) UHM/CEE/05-05

Laboratory Observations

- Low w/c ratio meant that many specimens took longer than expected to corrode
- Reinforcement protection admixtures:
 - DCI and CNI show effective protection
 - Rheocrete 222+ and FerroGard 901 show unreliable performance
- Decreased permeability admixtures:
 - Flyash and Silica Fume both effective
 - Xypex Admix C-2000 and Latex-Modifier performed poorly

Long-Term Field Monitoring

- 25 Field panels were placed at mean sea level at Pier 38 in Honolulu Harbor
- Selected most promising Phase II mixtures
- Included one panel with Kryton KIM
- Panels installed from July 2002 to June 2003
- Measurements to be taken annually for 7 years
 - supported by HDOT funding

Honolulu

Field Site
Oahu, Hawaii

Long-Term Field Specimen Design

Typical Field Panels

Field Specimen Tests

- Half-cell potential readings taken across top surface of panel - annually
- Panels removed from ocean every other year
- Chloride concentrations taken through cover concrete (away from the reinforcing steel)
- pH levels measured at level of reinforcing

Bi-Annual Data Collection

Chloride Concentration Samples

2004 concrete sampling method

Chloride Concentration Samples

2006, **2008**, **2010**, **2012** concrete sampling method

Field Panel Sampling

- Extract cores
- Cut slices at various depths
- Crush to powder
- Test for chloride content
- Test for pH level

Chloride Concentration Tests

❖All chloride concentrations used the Acid-Soluble test method with a CL-2000 Chloride Field Test System (James Instruments, Inc.)

www.ndtjames.com

Chloride Concentration v.s. depth for Control w/ 0.40 w/c

Chloride Concentration v.s. depth for Control w/ 0.35 w/c

Life-365 Prediction Software

Life-365 Prediction Software

- Admixtures are limited for analysis:
 - Rheocrete CNI (used for DCI also as same calcium nitrite compositions)
 - Rheocrete 222+
 - Fly Ash
 - Silica Fume
 - Slag (not used for this research)

Life-365 Default Values

The three main values focused on in this report include:

- 1. Diffusion coefficient, D_{28} (m²/s)
- 2. Diffusion decay index, m (dimensionless)
- 3. Chloride threshold, Ct (% mass concrete)

 Default and adjusted input values for Control Panels 1 and 2

	Default values	Adjusted values
Diffusion coefficient	7.94E-12	5.50E-12
m	0.20	0.38
Corrosion threshold	0.05	0.05

 Default and adjusted input values for Control Panel 7

	Default values	Adjusted values
Diffusion coefficient	6.03E-12	6.50E-12
m	0.20	0.53
Corrosion threshold	0.05	0.05

 Default and adjusted input values for DCI Panels

	Default values	Adjusted values
Diffusion coefficient	7.94E-12	5.50E-12
m	0.20	0.38
Corrosion threshold	0.05	0.05

 Default and adjusted input values for CNI Panels

	Default values	Adjusted values
Diffusion coefficient	7.94E-12	5.50E-12
m	0.20	0.38
Corrosion threshold	0.05	0.05

 Default and adjusted input values for Rheocrete 222+ Panels

	Default values	Adjusted values
Diffusion coefficient	7.94E-12	5.50E-12
m	0.20	0.38
Corrosion threshold	0.05	0.05

Default and adjusted input values for Fly Ash Panels

	Default values	Adjusted values
Diffusion coefficient	6.37E-12	3.00E-12
m	0.32	0.35
Corrosion threshold	0.05	0.05

 Default and adjusted input values for Silica Fume Panels

	Default values	Adjusted values
Diffusion coefficient	2.71E-12	2.50E-12
m	0.20	0.30
Corrosion threshold	0.05	0.05

Half-cell Potential Tests

 Half-cell potential tests were performed to evaluate corrosion conditions within each field panel

Measured Potential	Statistical risk of corrosion
(mV)	occurring
< -350	>90%
Between -350 and -200	50%
> -200	<10%

Reference electrode = Copper Sulfate Electrode (CSE)

Testing Half-cell Potential

PANEL # 2
Halawa Control 0.40 w/c

LEGEND:

+ - HALF-CELL LEAD CONNECTION

CORE HOLE DAMAGE

Half-Cell Potential at Various Years

Half-Cell potential at 9.6 years

Visual Observation

Rust on Front Edge

<u>Visual Observation – Reinforcing Steel</u>

PANEL # 7
Kapaa Control 0.35 w/c

LEGEND:

+ - HALF-CELL LEAD CONNECTION

Visual Observation of Panel 7 Top Layer Top Surface Reinforcing Steel

Panel 4: Halawa 0.40 w/cm with 10 l/m³ DCI

Half-Cell Potential Various Years

Half-Cell potential at 9.7 years

Panel 4: Halawa 0.40 w/cm with 10 l/m³ DCI

Visual Observation

Crack and Rust at Front edge of Panel 4

Panel 4: Halawa 0.40 w/cm with 10 *l*/m³ DCI Visual Observation – Reinforcing Steel

PANEL # 4

Halawa 0.40 w/c with 2 gal/cuyd DCI

Panel 4: Halawa 0.40 w/cm with 10 l/m³ DCI

Visual Observation of Panel 4 Top Layer Top Surface Reinforcing Steel

Panel 5A: Kapaa 0.40 w/c ratio w/ 20 l/m³ CNI

Panel 5A: Kapaa 0.40 w/c ratio w/ 20 l/m3 CNI

Panel 15: Kapaa 0.40 w/c; 5 l/m³ Rheocrete

Panel 15: Kapaa 0.40 w/c; 5 l/m³ Rheocrete

Panel 18: Halawa 0.40 w/c; 15 l/m³ Ferrogard

Panel 18: Halawa 0.40 w/c; 15 l/m³ Ferrogard

Panel 14: Kapaa 0.40 w/c; 5% Latex Modifier

Panel 14: Kapaa 0.40 w/c; 5% Latex Modifier

Panel 21: Kapaa 0.40 w/c; 2% Xypex

Panel 21: Kapaa 0.40 w/c; 2% Xypex

Panel 22: Kapaa 0.40 w/c; 2% Kryton KIM

Panel 22: Kapaa 0.40 w/c; 2% Kryton KIM

Panel 22: Kapaa 0.40 w/c; 2% Kryton KIM

Panel 22

Top Surface

Panel 13: Halawa (0.36 w/cm) 15% Fly Ash

Half-Cell Potential Various Years

Half-Cell potential at 9.6 years

Panel 8: Kapaa 0.36 w/c; 5% Silica Fume

Panel 8: Kapaa 0.36 w/c; 5% Silica Fume

Panel 9: Kapaa 0.36 w/c; 5% Silica Fume

Panel 9: Kapaa 0.36 w/c; 5% Silica Fume

Reinforcing Steel Mass Loss

Reinforcing Steel Mass Loss

Reinforcing Steel Mass Loss

Conclusions Based on field specimens

- Control panel with w/c ratio of 0.35 performed better than control panels with w/c ratio of 0.40
- DCI and CNI both appear effective at 20 l/m³ dosage. Results for 10 l/m³ dosage not reliable.
- Rheocrete 222+ and FerroGard 901 provide varying performance results.
- Latex-modifier and Xypex Admix C-2000, showed poor performance.

Conclusions Based on field specimens

- Panel with Kryton KIM showed minor corrosion and low half-cell readings after 9 years.
- Panels with 5% silica fume replacement showed inconsistent results – possibly due to inadequate distribution of silica fume during mixing
- Panels with 15% fly ash replacement showed good performance after 9 years.

Recommendations

Use low w/c ratio mixtures

Include fly ash replacement at 15% or greater

Include DCI or CNI corrosion inhibitor at 20 l/m³ or greater

Possibly add Kryton KIM for additional protection

Kauai Hindu Temple 1000-year design life.

Final Design

- Use high Fly Ash concrete
- Use low cement and water content
- Use superplasticizers to increase slump
- Add superplasticizer, NOT WATER, at site
- All of the above reduce concrete shrinkage
- Monitor internal temperature of concrete to prevent thermal cracking
- Wet cure for 7 days or more
- Design for 3000psi concrete after 90 days

Application of burlap and moisture

Wet burlap covered with plastic sheet

Slow strength gain

Table 4 — Average compressive strength of concrete cylinders, MPa (psi)

Test age	Lower slab	Upper slab
3 days	6.0 (870)	7.3 (1065)
7 days	9.0 (1300)	10.9 (1580)
28 days	14.8 (2145)	17.5 (2540)
90 days	23.1 (3350)	27.6 (4000)

