

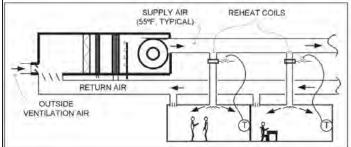
Mechanical Systems and Controls for Institutional Building

Dr John Straube, P.Eng.
Building Science Corporation
University of Waterloo
www.buildingscience.com

Functions

Five Critical functions are needed

- Ventilation
 - "fresh air"
 - Dilute / flush pollutants
- Heating
- Cooling
- Humidity Control
- Air filtration / pollutant Removal
 - Remove particles from inside and outside air
 - Remove pollutants in special systems


12-06-07

Common Multi-zone Systems

- CAV Constant Air Volume
 - high energy consumers but provide outdoor air
- VAV Variable Air Volume
 - decent energy performance, but rarely supply desired ventilation (fresh) air rates
 - Often heat and cool simultaneously or loose control of comfort/humidity

12-06-07

Constant Air Volume

Great RH & T control (Dewpoint of 55 all the time)
Terrible energy performance (reheating almost all air, all the time)
Often no designed exhaust air: "pressurize" building

Variable Air Volume VAV BOX DAMPERS CONTROLLED BY ROOM OTHER ZONES THERMOSTAT O RETURN AIR SUPPLY AIR SUPPLY FAN THERMOSTAT TO AND FROM OTHER ZONES

Poor IAQ: ventilation controlled by thermostat Poor/no RH control: depends on cooling coil operation Pick: good energy performance /poor RH&IAQ, or good RH / poor energy Often no designed exhaust air: "pressurize" building

VAV Challenges

- "Rainy day"
 - How to deliver fresh air and control RH when it is raining and 68 F outside
- Demand ventilation
 - How do we
 - · control fresh air rate and
 - not impact air temperature
 - · all without reheat?

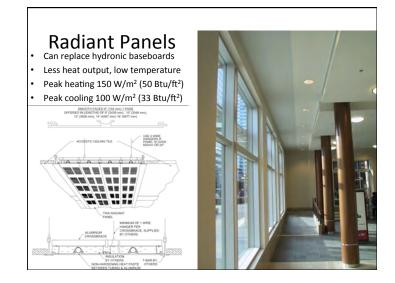
DOAS

DOAS: Dedicated Outdoor Air Systems

- Deliver ventilation air to people without over ventilating (least energy)
- Excellent humidity control, no extra reheat
- No cross-contaminated air from different zones
- Small ducts (ventilation only, no cooling)
- · Works well with hybrid (natural) ventilation
- Disadvantage: economizer flow is limited, so free air cooling capacity is limited by 2-3X

BuildingScience.com Perfect HVAC Thermostat controls heating/cooling by zone (any system) Ventilation rate controlled by occupancy (ideally CO₂) All air is delivered dry (provides humdity control), neutral temperature No re-circulated air (improved IAQ / less cross contamination) No holiday schedule for ventilation. No under/over ventilation.

Retrofit and DOAS


- Can Retrofit DOAS to CAV very easily
 - Change the diffuser
 - add modulating damper
- Easiest to retrofit if no ducts in building
 - E.g., old dormitories, offices, etc had no cooling and hence no ductwork
 - Small ducts can usually be fit into space easily

Convector / Radiator

 Hydronic terminal units often designed for high temperature (180F supply/160 return)

- Can using condensing with outdoor reset

Distributed Systems

- E.g., Local cooling, local HRV/ERV
- Avoids long complex ductwork
 Typ VAV use 30% of AC energy to run fans
- Allows for better direct control of spaces
- Often less disruptive to install
- Often less expensive and more efficient
- Require maintenance nearer to occupied spaces, not in central plant rooms

Only run refrigerant lines for heating and cooling Capacities in the 25 ton + range now available

Ductless Mini-split

- Many systems now variable speed to match load, increase dehumidification, and reduce energy use
- Need separate ventilation

Room sized HRV/ERVs

- Capacities of 60-1200 cfm
- provide ventilation for small offices to classrooms of 100 students
- Simple and easy to add CO2 or occupancy sensors to operate at high speed.

