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IBP field test site in Holzkirchen

1976 2001

1953

Introduction
60 years of field tests 

=  long-term durability 

observation
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Measure-

ments help 

to validate 

calculations

Introduction
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Introduction

Green roof investigation

Water retention is good for 
the environment but not 

always for the building 
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VERU test building to 
determine energy 
consumption required to 

meet comfort conditions

Introduction
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Moisture is the main 

cause for damage 

and degradation

Moisture problems

Degradation

16
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Damage

Ice crystals

Damage most 

likely at max. 

water content

NMR-Scanner Hygrothermal
Simulation

Moisture problems

17
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Indoor air quality problem: visible mould

High indoor humidity provokes mould growth on thermal bridges in cold 

climates. In hot and humid climates unconditioned spaces are at risk

18
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Mould 
stains

Test house monitoring

Mold due to moisture migration from hot to cold

Indoor air quality problem: invisible mould

Moisture problems

19
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exterior interior

θ Li

θ La

qiqa

θ Oi

θ Oa

q

Thermal transport phenomena:

� conduction in solid matrix

� conduction in gas-filled pores

� conduction in liquid phase

� long-wave radiation (low-E degradation)

� vapor diffusion with phase change

� air convection

Moisture problems

Moisture affects the thermal resistance 

20
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Hygrothermal envelope loads

ASHRAE HoF 2013

Moisture loads

Moisture control:

Protecting buildings and 
building systems from exterior 
and interior moisture loads

21
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Heating period: outdoor temp. 0 °C Cooling period: outdoor temp. 30 °C

Moisture loads

Temperature and vapor pressure gradients

22
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Driving rain

Wind 
driven 
rain

Driving rain is a major cause 
for building envelope failure

Moisture loads

23
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1990s: damaged EIFS walls in North 
America (wooden structures)

Reason: water penetration at 
window joints and wall connections

Rainwater penetration

Rainwater penetration creates a 
habitat for ants behind EIFS, but 
no visible damage to the brick wall

Moisture loads

24
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Solar vapor drive (walls)

Solar vapor drive occurs when sun 
heats up wet reservoir wall cladding

ASHRAE report 1235-TRP (2010): 

THE NATURE, SIGNIFICANCE AND 

CONTROL OF SOLAR-DRIVEN 

DIFFUSION IN WALL SYSTEMS

Lab test

Moisture loads

25

Nineteenth Annual Building Science Symposium August 4, 2015

Kunzel/Antretter 17 of 263



Cathedral ceiling with blown-in 

cellulose fiber insulation

Solar vapor drive (roofs)

Solar vapor drive in roof 
assemblies may occur 
when the roofing tiles 

absorb moisture

Moisture loads

26
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German Std. DIN 68800-2 (2012) Wood preservation 

– Preventive constructional measures in buildings

Safety feature: moisture source 250 g/m² for 
roofs and 100 g/m² for walls to account for
indoor air flow penetrating the building 
envelope

Condensing moisture 
may be trapped

>> Double barrier 
components fail to 

meet the standard  

Air flow through the envelope

Moisture loads

Robert Borsch-Laaks
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Construction moisture

Masonry moisture may move upwards into the roof

Moisture loads Foto: Mündl

Foto: Mündl
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International Association for 
Science and Technology of 
Building Maintenance and 
Monument Preservation

WTA-Guideline 6-2: Simulation of Heat and Moisture Transfer (2001)

Standards and guidelines

29
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The hygrothermal equations described in this standard shall not be applied in 
cases where:

� convection takes place through holes and cracks;

� two-dimensional effects play an important part (e.g. rising damp, 
conditions around thermal bridges, effect of gravitational forces);

� hydraulic, osmotic, electrophoretic forces are present;

� daily mean temperatures in the component exceed 50 °C.

The standard deals only with perfectly assembled 
and installed components without defects

European Standard BS EN 15026 (April 2007):

Hygrothermal performance of building components and building 

elements - Assessment of moisture transfer by numerical simulation

Standards and guidelines
Nineteenth Annual Building Science Symposium August 4, 2015
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ANSI / ASHRAE Standard 160 (2009)

Standards and guidelines  
Start moisture design 

Define building assembly 

Assign material properties 

Select initial conditions (4.1) 

Select outdoor climate (4.5) 

Select exposure conditions (4.6) 

Determine indoor conditions 

(4.2-4.4, also flow chart 2) 

Perform analysis (5) 

Acceptable 

performance (6)? 

Add initial drying 

procedure? 

Change in con-

struction design? 

Report 

results (7) 

Change 

in HVAC 

design. 

yes 

yes 

no 

no 

no 

yes 
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Rainwater penetration: 

In the absence of specific full 

scale test methods and data for 
the considered exterior wall 

system, the default value for 
water penetration through the 
exterior surface is 1% of the 
water reaching that exterior 
surface.

The deposit site for the water 
shall be the exterior surface of 

the WRB. If a WRB is not provi-

ded then the deposit site shall be 

described and a technical 

rationale shall be provided.

Safety feature: consideration of imperfections at joints and connections
of best practice façade constructions

ANSI / ASHRAE Standard 160

1% rainwater penetration

Wind 
driven 
rain

Standards and guidelines

32
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5.   Auxiliary models for a simplified   
consideration of special effects

5.1. Component ventilation

5.2. Condensation due to air convection 
through components

5.3. Driving rain penetration

Imperfection models help to differentiate 
between poor design and poor installation 

Standards and guidelines

33
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Safety 

limit to 

prevent 

rot

Evaluation of transient 
hygrothermal simulation 
results for wood and wood 
based materials

34

Standards and guidelines

SpruceSolid wood

Draft
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EN 15026: transport phenomena to be considered ‒ heat transfer

� heat storage of the dry building material and of the contained moisture 

� heat transport by thermal conduction with moisture-dependent thermal conductivity

� latent heat transport by vapour diffusion with phase change (evaporation / cond.)

cold

vap. flow

hot

∆xϑ

measured including latent heat

35
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EN 15026: transport phenomena to be considered ‒moisture transfer

� moisture storage by water vapour sorption and capillary forces

� water vapour transport by diffusion  

� liquid transport by surface diffusion and capillary conduction

36
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Climate conditions

temperature, RH, 
radiation, 

precipitation, wind 
speed & direction

Material properties

ρ, c, λ, µ

w = f (ϕ), Dw = f (w)

Assembly 
composition

orientation 
inclination

initial conditions

e.g. construction 
moisture

Dynamic temperature and moisture profiles
heat and moisture fluxes

Input / output

Hygrothermal simulation
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Hygrothermal 
simulation of 
dynamic 

temperature 
and moisture 

conditions in a 
cavity wall 

38
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Good agreement during the 

first 6 months afterwards odd 

behavior of concrete samples

Hygrothermal simulation

Validation example: brick 
masonry impregnated with 
water repellent siloxane 
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Drill probing for 

moisture content 

determination

Hygrothermal simulation

Validation example:
exterior insulation on masonry

40
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Hygrothermal simulation – roofs

Hygrothermal 
conditions in a 
low-slope roof

zinc, wooden sheathing   /   glass fiber insulation   /   poly, gyp. board

layer thickness [cm] 
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Validation example: light-weight flat roofs with construction moisture

Hygrothermal simulation

42
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Water droplets on the 
bottom of the insulation

Inspection of the 
roof after 3 years

Hygrothermal simulation

43
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Exterior temp. sensor 
position (beneath the 
roofing membrane)

Hygrothermal simulation

Surface temperature -
Comparison of 

calculation and  

measurement
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Temperature and RH fluctuations 
within  the roof assembly

Exterior sensor position (directly 
beneath the roofing membrane)

Hygrothermal simulation

45
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Humidity sensor positions

RH within the roof assembly (insulation thickness 90 mm) 

Hygrothermal simulation
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Flow chart in prEn 

15026 showing how to 

perform  hygrothermal 

simulation and how to 

evaluate the results

Hygrothermal simulation – result evaluation

Evaluation of transient 
hygrothermal simulation 
results by post process 
models

47

Energy related 
consequences

Hygiene
Durability
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Hygrothermal simulation – result evaluation

Problem: effective R-value of “wet” insulation

48
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Thermal performance:

Calculated heat flux density at 

the interior surface 

if > 0: inward flux

if < 0: outward flux

Short wave absorptivity of 

exterior surface: 0.9

Hygrothermal simulation – result evaluation

Problem: effective R-value of “wet” insulation

Water content of 

insulation layer:

2 vol-% (1.8 kg/m²)

49
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Example case: flat roof with fiber 
insulation in Boston

Temperatures

Hygrothermal simulation – result evaluation

50

Nineteenth Annual Building Science Symposium August 4, 2015

Kunzel/Antretter 42 of 263



Hygrothermal simulation – result evaluation

Calculated hourly heat fluxes and their running 
monthly means at the interior surface of the flat 
roof with and without latent heat

Heat fluxes

51
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Hygrothermal simulation – result evaluation

Impact of moisture in fiber glass insulation on effective thermal resistance 

during heating and cooling season is smaller than expected 
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Aspergillus restrictus (ref.: Smith)

Mould germination time and growth 
depend mainly on RH, temperature 
and substrate quality

53

Hygrothermal simulation – result evaluation

Problem: mold growth 
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Modeling mold growth 

Spore 
moisture 

retention

Temperature [°C]
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100 II  non biodegradable mat.

I biodegradable material

0  optimum substrate

Ref.: Sedlbauer
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Modeling mold growth (Sedlbauer) Viitanen from VTT has developed 
a model that accounts for mold 
decline under dry conditions

55

Hygrothermal simulation – result evaluation
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Ref.: Marquardt

56

Hygrothermal simulation – result evaluation

Problem: corrosion

TU Berlin:

no corrosion 
in carbonated 
concrete
< 80% RHCorrosion of concrete sandwich 

element after carbonation of 
exterior surface layer
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Cross-section [cm]

WUFI® simulation over several years 
(Holzkirchen climate, exposed facade)

Concrete:
100 kg/m³ (10 vol.-%)
= EMC at 95% r.F. 

Reinforcing Steel

EPS-
cavity 
insulation  

Hygrothermal simulation – result evaluation

Solving corrosion problems of sandwich 
panels by adding exterior insulation
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EIFS (EPS)

EIFS (MW)

insulation

insulation

Corrosion discontinues 
between 6 months (MW) 
and 2 years (EPS) after 
application of EIFS

Hygrothermal simulation – result evaluation

Drying of exposed concrete sandwich 
element after thermal retrofit (WUFI sim.) 

Reinforcing Steel

EPS-cavity 
insulation  
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Ref.: Straube & Schumacher

59

Hygrothermal simulation – result evaluation

Corrosion: from TOW (EMC 80%) to temperature and RH 
dependent corrosion rate

Predicting 
corrosion 
based on 

hygrothermal 
simulation 

results
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Lecco (Italy)

Predicting corrosion of steel in historic mortars
(based on research results from Politecnico di Milano) 

Determining temp. & RH dependent corrosion rate 

60

EXPOSURE CONDITIONS:

� T � 5-20-40°C

� RH � 65-80-95% and in H2O

� Time � 50 and 7 days

CORROSION TESTS:

� Electrical resistivity (ρ, Ωm)

� Corrosion potential (Ecorr, mV)

� Corrosion rate (icorr, mA/m2)

TYPE OF MORTAR:

� Gypsum (G)

� Lime and Gypsum (LG)

� Lime and Pozzolana (LP)

� Lime and Cocciopesto (LCP)

� Lime and Cement (LC)

Hygrothermal simulation – result evaluation
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Corrosion progress of carbon steel in mortars: gypsum / lime-cement

61

Temperature [°C]Temperature [°C]

Water saturation Water saturation

Hygrothermal simulation – result evaluation
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Corrosion model validation

Lime and gypsum mortar (LG)
corrosion model vs. measured data 

RH: 65%

80%

95%

100%

62

� Model results slightly overestimate corrosion rate (being on the safe side)

� Differences max. 1,5 µm/year

� Validation also at 5°C and 20°C and for other mortars
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Hygrothermal simulation – result evaluation
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Condensation potential of different leak pattern 

Warming of the flow path in case of 

straight air flux �

No or only little condensation

Cooling of the air in case of slow and 

indirect path �

potential of serious condensation

Energy leak Moisture leak

Hygrothermal simulation – air infiltration model

63
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Fan pressurization

air pressure differentials due unbalanced 

ventilation (continuous / temporary)

Wind

air pressure differentials depend on:

- wind speed and direction

- building height and geometry

- open windows, partition air-tightness

Driving forces for air flow through building envelope systems

2

h
g

T

TT
ρ∆P

i

ia ⋅⋅
−

⋅=

Stack

air pressure differentials due to buoyancy

Hygrothermal simulation – air infiltration model

64

Nineteenth Annual Building Science Symposium August 4, 2015

Kunzel/Antretter 56 of 263



Flow paths through building envelope components 

are 3D-phenomena of random nature

– they defy even sophisticated models

Hygrothermal simulation – air infiltration model

Only one guy thinks he can do it!

65
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qCL = kCL · (Pi – Pe)
qCL [m³/m²h]   air flow through moisture leaks

kCL [m³/m²h·Pa] air permeability of …

CL = Component Leakage

Determination of kCL is the challenge

Hygrothermal simulation – air infiltration model

TenWolde et al. (1998):

Moisture entry caused by infiltration corresponds 
to the amount of moisture which permeates by 
vapor diffusion through a retarder with 1 perm

Ask Anton!

Air permeability of moisture leaks kCL = 0,007 m³/(m²h·Pa)

Therefore a simple 1D approach is proposed

66
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( )
p  xsat,iCLCL ccqS −⋅=

ci [kg/m³]  indoor vapor concentration

csat,xp [kg/m³]  sat. vap. con. at position xp

Transient moisture sources SCL resulting from air penetration

Example flat roof:

condensation plane xp

Model assumptions:

� Heat effects of penetrating air (sensible and latent) are neglected

� Only condensation at position xp is considered – i.e. no sorption at high RH 

� Convective drying is excluded  (buoyancy model)

Hygrothermal simulation – air infiltration model
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The moisture source due to air infiltration into the assembly is 
simulated as a function of the following parameters: 

� air flow path (selection of condensation plane)

� stack height 

� outdoor climate and indoor climate

Hygrothermal simulation – air infiltration model

Application example: flat roof in Chicago

68
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Indoor air convection (looping, ventilation by indoor air)

� Average width of air gap between sheathing an roofing membrane: 1 mm  

� Air change rate corresponding to moisture source of infiltration model: 16 h-1

� Constant ACH over whole year including all thermal effects

Comparison: infiltration / convection of indoor air

Hygrothermal simulation – air infiltration modelNineteenth Annual Building Science Symposium August 4, 2015
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Evaluation of the OSB moisture content (MW & VR 0.1 / 1.0 perm)

� different air flow models

� Chicago cold year, indoor climate acc. to Std. 160 (simpl. method) 

� stack height of 5 m  

� grey roofing membrane (as = 0.6)

Hygrothermal simulation – air infiltration model

70
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Evaluation of the OSB moisture content (MW & EPS)

� reflective roofing membrane (as = 0.3)

Hygrothermal simulation – air infiltration model

71

Both airflow models give 
similar results in this case:

A cool roof in a cold climate 
may cause problems

I am afraid Andre hates me for this
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Passive design principles for energy efficient buildings

72

Hygrothermal whole building analysis

Moisture 
control is 
often 

neglected
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WUFI® Plus includes all heat and moisture exchange processes 
between the interior spaces and the building envelope

73

Hygrothermal whole building simulation

Thermal 
bridges 
bear the 

highest 
mould 

growth 
risk
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Hygrothermal whole building simulation

Warm & humid air entering a cold zone may cause mold problems 

WUFI® Plus includes interzonal air exchange
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Envelope moisture control and indoor humidity control are essential 
for building durability and healthy indoor conditions

Conclusions

75

Degradation models based on HT simulation results exist for
● mold growth, rot (currently being developed)

● corrosion of steel in mortar (concrete)

● corrosion of metal fasteners in wood (FPL)

HT simulations help to 
● predict climate and operation impacts on hygrothermal performance

● to identify the cause of damage or premature degradation

● to differentiate between design and installation failures 

Transient hygrothermal conditions in buildings or building 
assemblies can be reliably obtained by numerical simulation 

Challenge: designing buildings that are energy efficient, 
comfortable, healthy and durable (moisture tolerant) 
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European and American awards for WUFI®

76

www.wufi.com

www.building-physics.com
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© Fraunhofer IBP 

Auf Wissen bauen

Florian Antretter – August 4th 2015

Nineteenth Annual Westford Symposium on Building Science

Indoor climate surveys and analysis of 
occupant behavior 

Nineteenth Annual Building Science Symposium August 4, 2015

Kunzel/Antretter 69 of 263



© Fraunhofer IBP

Outline

� Measurement of Indoor Climate and User Behavior

� Indoor Temperature and Relative Humidity Conditions

� Window Ventilation

� User Behavior Modeling
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© Fraunhofer IBP

Measurement of Indoor Climate
and User Behavior
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© Fraunhofer IBP

Measurement Locations

Korea
Indoor
Climate

Germany
Indoor Climate
and Window
Ventilation

USA
Indoor
Climate
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© Fraunhofer IBP

Indoor Temperature and Relative 
Humidity Conditions
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© Fraunhofer IBP

US Measurements - Location / Climatic Boundary Cond.

Madison: Max
.

Min
.

Temp. [°C] 23.0 -6.4

Abs. Hum. 
[g/m3]

13.9 2.6

Madison, Wisconsin
Start: Feb. 2005

Knoxville, Tennessee
Start: Sep. 2004

Weather Data from 
EnergyPlus real-time 
weather database

Knoxville: Max
.

Min
.

Temp. [°C] 25.2 2.9

Abs. Hum. 
[g/m3]

18.6 4.0
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© Fraunhofer IBP

US Measurements - Building Selection

� detached single family 
dwellings

� cross-section for one-family 
houses in respective area

� documentation of general 
building characteristics

� Total:

� Knoxville: 10

� Madison: 11
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© Fraunhofer IBP

Temperature/Relative Humidity Measurement

� calibrated temperature/RH data loggers

� 15 minute measurement interval

� logger location: 

� living room

� kitchen

� sleeping room

� bathroom 

� crawlspace/basement

� installation height approx. 5 ft

� away from external walls/inner heat 
sources
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© Fraunhofer IBP

Blower Door Tests

Madison: 0.9 – 12.2 ACH@50Pa

Knoxville: 3.3 – 14.0 ACH@50Pa
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© Fraunhofer IBP

Inner temperature – living rooms monthly mean

- no mean 
temperatures 
above 28 °C

- very low 
mean 
temperatures 
in Madison

(50 % below 
18 °C)
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© Fraunhofer IBP

Moisture load – living rooms monthly mean

- no very high  
moisture loads in 
all month

- dehumidification 
for all buildings in 
both locations

- High negative 
moisture loads in 
cooling period

Nineteenth Annual Building Science Symposium August 4, 2015

Kunzel/Antretter 79 of 263



© Fraunhofer IBP

Distribution Representation

� bi-modal distribution

� no simple distribution representation possible
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© Fraunhofer IBP

Moisture Load depending on Type of Room

� very similar distributions in all rooms

� slightly higher loads in bathrooms
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© Fraunhofer IBP

Measurements in Residential Buildings – Set-Point

Distribution of mean temperatures in 10 living rooms in North 
America and Germany (in winter and summer)
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Comparison with Standards

� minimum temperatures only 
partially match mean measured 
values

� maximum temperature threshold is 
not exceeded in most of the times

� monthly mean moisture loads are 
below class 2 (Knoxville) and class 3 
(Madison) from DIN EN ISO 13788

� density distributions allow short 
time excess estimation

� calculating RH from temperature with standard moisture loads 
would lead to too high relative humidity's

� measured RH fit well in DIN EN ISO 15026 and ASHRAE 160 
simple method range
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Measurements in Korea

Project: Optimization of Comfort and Energy Efficiency in Korean high rise 
residential building
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Comprehensive Measurements (6 apartments)

Air temperature + Humidity

Globe temperature

CO2

Energy consumption of air conditioner

From May 2009 to July 2010
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Simple Measurements (18 apartments)

Air temperature + Humidity

CO2

From May 2009 to July 2010
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Proposed Design Conditions for Asia

Annual course of room temperature in 

different rooms of the monitored dwellings
Annual course of relative humidity in 

different rooms of the monitored dwellings

Design temperature Design humidity (safe side)

moisture load:  low, medium, high
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Window Ventilation
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User dependent ventilation?

Short Time 
Ventilation

Permanent 
Ventilation
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Measurement Projects in German Residential Buildings

� Only residential buildings

� Measurement period 2 – 3.5 years

� Hourly measurements of

� Exterior climate

(Temperature, RH, Radiation, ...) 

� Indoor climate (Temperatur, RH, ...)

� Window status

� General Information about

� Room type

� Ventilation system

� Building airtightness

� Number of open windows (opening probability) 
and mean opening duration
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Conclusions from Literature Search

� Main Exterior Influences are exterior
temperature, high wind and rain

� Main Internal Influences are interior
temperature, CO2 concentration and room
type

� Time dependent and correlated effects are
often not taken into account

� Cultural and ethnical habits are not taken
into account

� Models base mainly on measurements in 
office buildings

� Categorization of user types is rarely found

� Main modeling methods are Logistic
Regression, Markov-Chains, Survival Analysis
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Impact of exterior climate

� Increase in opening
probability with
increasing exterior
temperature

� Above 27 °C (80 F) 
exterior temperature
decreasing opening
probability

� High dependence on 
exterior temperature
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Impact of ventilation system

� Only very few buildings with
very little manual
ventilation activity

� Same bandwith in 
apartments with and 
without ventilation system

� The existence of a 
ventilation system has only
little influence on the
window opening behaviour
(but limited data source!)
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Impact of building air tightness

� No differences between
buildings with different 
airtightness levels

� Building air tightness with
little influence
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Impact of time of the day per room type

� Sleeping rooms are opened
continously

� Living rooms with a clear
day profile

� Type of room and temporal 
resolution is important
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Individual user behavior

� Very irregular manual
window opening in all 
measured living rooms

� High bandwith of opening
durations

� Categorization of users is
important
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Derivation of user profiles

� Differentiation in day, night
and continuous ventilation
types

� Differentiation between
high and low frequency
ventilation types

� Categorization of users is
possible and useful
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Why do we do it?
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Provide information for standards and simulations

� Moisture and temperature conditions 
for hygrothermal component 
simulations

� Moisture loads and ventilation 
conditions for hygrothermal building 
simulations

� Real life set-point information for 
energetic simulations
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Design Optimization with Probabilistic Modeling

Building Use and 
Occupant Behavior

Probability Distribution

Optimized 
Design

Results 
Distribution,
e.g. moisture 
content of 
board

Target 
Criteria,
e.g. critical 
moisture 
content12 M-% 18 M-%

e.g. Moisture content 
of wood based board
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Improved Control and Self Learning Systems

Occupancy model

User action model

Ventilation rate model

- HVAC control algorithm

- user education

- ...

- inner loads

- set-point

- shading

- lighting

- ...
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Conclusions and Outlook
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What did we learn?

� The US is not Europe is not Asia.

� Some like to cook.

� I want to open my windows. Oh – and is there a ventilation system?

� My wife is different. Yours too.

� We can understand how users operate their buildings (and model it)

� We can integrate this knowledge in the design phase

� More robust design

� Less „negative“user interaction with the intended building operation

� We can use this knowledge for online building operation optimization
(e.g. self learning ventilation/thermostat/… control, IoT)
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Auf Wissen bauen

Florian Antretter – August 4th 2015

Nineteenth Annual Westford Symposium on Building Science

Indoor climate surveys and analysis of 
occupant behavior 
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Auf Wissen bauen

Florian Antretter – August 4th 2015

Nineteenth Annual Westford Symposium on Building Science

Static versus dynamic passive building 
design
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Outline

� Passive Building Principles

� Current practice in passive building modeling

� New holistic design tool

� Examples

� Conclusions and Outlook
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Passive Building Principles
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Requirements on Buildings

Energy Damage Free

Air Quality /
Thermal Comfort

Passive Measures
Heating/Cooling

De-/Humidification
Ventilation
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Passive Building Principles in one term: Passive House

� The term Passive House („Passivhaus“) relates to a certain building 
standard

� „Passive“ refers to the heat demand of the building - the major 
energy sources are „passive“ (Solar Energy, Persons, Devices etc.)

� It‘s main aspectes are:

� High standard thermal insulation / optimized window layout

� Airtightness

� Ventilation system with energy recovery

� Efficient heating system
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Why Passive House?

� Comfort and Indoor Climate 

� Less temperature stratification, 
warm surfaces

� Constant fresh air supply

� Very low energy demand

� High quality insulation and 
windows

� Prevention of thermal bridges

� Economical and ecological reasons

� Reduced CO2 output

� Higher resilience

� More independence from energy 
market prices

Nineteenth Annual Building Science Symposium August 4, 2015

Kunzel/Antretter 110 of 263



© Fraunhofer IBP

Passive Building Principles

General Principles for Low Energy Buildings

� Building site selection and orientation

� Building geometry (size, shape, spacing)

� Window placement, selection of glazing properties and solar 
protection (Daylighting design, shading, passive solar gains)

� Continuous insulation, connection details free of thermal 
bridges

� Air-sealing, air-tight construction

� Thermal and hygric mass (as appropriate)

� Ventilation (natural or mechanical, with heat-and-moisture 
recovery as appropriate)
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Designing Energy Efficient Buildings – A Holistic Task

� A holistic building energy 
concept addresses comfort, 
hygiene, and durability

� Passive measures are 
indispensable and may be 
supported by efficient HVAC 
system and renewable energies

� Climate-specific and 
economical solutions require 
individual design

� Availability of technology to be 
considered

� Workmanship quality to be 
carefully planned and 
supervised 

Technology

Process quality

1. Reduce energy losses and 

control solar gains

(insulate, seal & shade)

2. Use energy 

efficient HVAC

3. Maximize

use of re-

new-

ables

Climate specific

Availability

Workmanship

Source: Fraunhofer IBP
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Passive Design Principles for Energy Efficient Buildings

Moisture 

control is 

often 

neglected
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World wide application of the standard requires deep 
analysis of hygrothermal building performance

Source: http://www.gbpn.org/sites/default/files/Low_C_MBABEP.pdf
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Current practice in building
modeling/hygrothermal design
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Limitations of previous Passive House assessment

General

� Static calculation (Only annual / monthly method)

� No realistic inclusion of thermal inertia

Analysis

� No real comfort analysis

� No damage analysis (e.g. mold growth)

Limited Validation

� Only verified for European climates

� No broad scale North American verification

Usability

� No user-friendly input

� No assistance for missing / incorrect Data

© nelsoncleancare.com
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Thermal Conditions in Zones and Building Energy Use (Examples)

� Balance based: PHPP, …

� Dynamic: Energy Plus, TRNSYS, WUFI Plus, IDA-ICE, ESP-r, …

Used for

� design of buildings with low energy use

� assessment of the integral interaction of building, HVAC and use

� expected indoor thermal conditions and energy use

but…

� no hygrothermal interaction with the envelope

State of the art - building energy assessment

Nineteenth Annual Building Science Symposium August 4, 2015

Kunzel/Antretter 117 of 263



© Fraunhofer IBP

Hygrothermal Conditions on and in Building Components

� Steady-state (e.g. Glaser (Dew Point) method)

� Dynamic (e.g. WUFI, Delphin, HygricIRC, …)

Used for

� ensuring damage-free constructions

� computation of the coupled heat and moisture transfer in building 
components with predefined boundary conditions

� expected temperature and moisture distribution in building components 
and energy and mass fluxes on surfaces

but…

� no interaction with the room

� predefined inner boundary conditions

State of the art - hygrothermal component simulation
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The ideal world…

Building energy design / certification:

� Passive house design / certification (monthly or annual balances)

� Dynamic building energy simulation

Comfort analysis on a room by room basis

� e.g. ASHRAE 55

Building component analysis

� Hygrothermal component simulation

� Interaction with the room

All based on “one” building model!
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Building simulation with

WUFI Plus/Passive
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Hygrothermal Whole Building Simulation

Hygrothermal 
Envelope 
Simulation

Climate Data

Construction Data

Material Data

Whole
Building 

Simulation

Hygrothermal 
Performance

Indoor Environment
Energy Demand
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Balances – from Component to Whole Building

� Weather

� Ventilation

� Inner Loads

� Set-Points

� HVAC
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Combination for a new tool – WUFI Passive

Hygrothermal 
Envelope 
Simulation

Climate Data

Whole
Building 

Simulation

Hygrothermal 
Performance

Indoor Environment
Heating/Cooling

De-/Humidification

Balance 
Based 

Assessment

Passive House 
Verification

Building Geometry

Construction Data

Material Data

Ventilation

Inner Loads

Set-Points
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Results Examples
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Dynamic output 
Inner climate

Inner Temperature

Heating / Cooling

Dynamic conditions indoor

� Hourly values for inner 
temperature and RH

� Easy assessment of 
improvement strategies

� Assessment of effect of 
thermal and hygric 
inertia
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Dynamic output – Comfort conditions

Comfort assessment (ASHRAE 55)

� Predicted mean vote

� Adaptive method

� Overheating hours
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Dynamic output – Heat flows

Heat / moisture flows

� Hourly values for all 
heat and moisture 
flows

� Monthly sums of 
heat and moisture 
flows

� Assessment of 
impact of different 
measures
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Dynamic output – Component performance

Hygrothermal component 
performance

� Hourly values for layer 
temperatures, RH and 
water content

� Easy moisture safety 
assessment
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Dynamic output – Movie

Movie

� Visualization of 
temperature 
and moisture 
distribution

� Heat and 
moisture fluxes 
on surfaces

� Identification of 
“problem spots” 
in the assembly
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Sophisticated building performance assessment

Examples for additional modeling 
options

� Shading strategies

� Ventilation strategies

� Use of thermal and hygric inertia

� Different usage profiles

� Insulated shutters

� Envelope optimization

� Change in size and orientation

� Window properties and size 
optimization
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Conclusions and Outlook
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PHIUS building certification program 

� Climate specific adoption 
of passive building 
standard

� Ensuring cost 
effectiveness while 
providing resilient high 
performance buildings

� Global network of 
experts to collect and 
spread passive building 
experience 

� Best solutions for healthy 
and comfortable passive 
houses in all climate zones

www.globalpassive.net
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Conclusions

� Buildings are designed for their
occupants

� Cost effective passive measures first!

� Design tools are available for combined 
analysis of energy, comfort and 
hygrothermal component performance

� Design of net-zero and positive energy 
buildings require detailed HVAC and 
photovoltaic simulation to match 
production and demand
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Auf Wissen bauen

Florian Antretter – August 4th 2015

Nineteenth Annual Westford Symposium on Building Science

Static versus dynamic passive building 
design
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Auf Wissen bauen

Florian Antretter – August 4th 2015

Nineteenth Annual Westford Symposium on Building Science

Is hygric inertia (moisture buffering) 
comparable to thermal inertia?
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Outline

� What is moisture buffering?

� Field test with wood based linings

� Experimental test with a special tile and energetic impact

� And the German castles?
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What is moisture buffering?
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Principle of moisture buffering

Buffer = Cache

Moisture buffering of the building enclosure is a transient process which 
depends on the moisture storage as well as on the moisture transport 
properties of the interior surface layers
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Principle of moisture buffering

► Water molecules attach to the inner 
surfaces of porous materials 

► The higher the humidity, the thicker the 
molecule layer

► With decreasing surrounding humidity the 
water molecules are desorbed again

Relative Humidity [%]

W
a

te
r 

C
o

n
te

n
t

Brick (37 Vol-%)
Wood (37 Vol-%)
Concrete (12.3 Vol-%)
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Principle of moisture buffering

Main influence factors:

� Humidity range
(Diffusion/Sorption)

� Area in contact with indoor air

� Surface transfer conditions

� Surface coatings

Determination of moisture 
buffer potential of building 
material in practice require:
� Realistic field test

� Hygrothermal building sim.
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Moisture buffering under real use conditions

Relevance for intermittent heating

Very small relative humidity fluctuations 
despite huge temperature fluctuations
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Advantages and disadvantages of moisture buffering

Advantages of moisture buffering materials

� More uniform indoor climate especially in the case of intermittent heating 
or high changes in moisture load

� Effect on surface temperature due to latent heat effects

� Energy saving potential by combining moisture buffering with adapted 
ventilation

Disadvantages of moisture buffering materials

� Reduced effectiveness of shock ventilation
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Field Test
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Test facility at IBP test site

South

� Two identical test rooms 

� well insulated 

� with external wall section 
including window facing south

� surrounded by heated spaces 
above and north
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Test facility

Outdoor air 

supply

Convective 

heater

Water 

reservoir

Ultrasonic 
evaporator

Fan

Reference room
with interior plaster 

and paint coat

Interior lining test room 
with aluminum wall 

paper

Both rooms have a non absorbent vinyl floor 
cover
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Daily profile of vapor generation

Vapor generation control 
of by time switch

Daily mean generation 
rate: 2 g/m³h 

(12 Ltr/d in 100 m² flat)
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Installed interior linings
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Test preparation

Storage of lining 
materials at 
20°C und 50% 
RH prior to 
installation in test 
room
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Sensor positions and data logging

Rotronic 

(RH)

PT 100

Heat flux 

meter
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Experimental results
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Moisture buffering effect of wood based interior linings

Optimum zone: RH between 40% and 60%
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RH Amplitude Ratio for All Materials
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Hygrothermal Whole Building Simulation - Validation
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Laboratory Experiment and 
Upscaling via Simulation
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Laboratory Experiment to Assess Moisture Buffering

Moisture buffering tiles in 
controlable climate chamber
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Results comparison and effect of the interior tile - winter

Test results „Winter“ case

� constant temperature 23 °C

� RH fluctuations

� without LG tiles: 45 %

� with LG tiles: 7 %

� duration of moisture production 
does not influence the moisture 
buffering
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Validation Simulation – Used Tool

Use of hygrothermal whole 
building simulation tool:

WUFI Plus

because of:

� Connection of hygrothermal
component calculation and 
energetic building simulation

� Transient coupled heat and 
moisture transport calculations

� Arbitrary time steps
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Results for one day in winter - without tiles

� very good agreement 
between 
measurement and 
simulation

� highest peak slightly 
under predicted with 
WUFIplus
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Results for one day in winter - with tiles

� details show 
excellent agreement 
for the increase in RH 
during moisture 
production cycle

� simulation predicts a 
slightly faster decline 
after reaching the 
peak level
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Base case for real room parameter study

Area: 96,7m²

Volume: 229,8m³

3 small North windows 
(5.4 m²)

3 bigger South windows
(9.0 m²)

Inner walls and ceiling to
room with the same climate
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Boundary conditions for real room study

Climate

Anchorage, Atlanta,

Baltimore, Chicago,

Fargo, Miami,

Minneapolis, Phoenix

Interior Surface
ceiling and one wall covered 

with LG tiles;

no LG tiles

HVAC Heating and cooling

plus de-/humidification

Design 
Conditions

Temp: max: 25°

Temp: min: 20°

Natural Ventilation: 0,5 /h

Inner Loads 
(with daily 
production 
cycles)

Heat conv. = 4589W

Heat rad. = 1926W

Moisture = 7845g

CO2 = 2151,9g
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Use of the tile in different climatic zones

Grafik 4 d rechts
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Humidification and dehumidification climate zone dependent

Additional 
Conditions

RH: max: 75%

RH: min : 35%
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And the Bavarian Castles?

The Kings House on the Schachen
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Conclusions and Outlook
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Conclusions and Outlook

� Hygric and thermal inertia are comparable – it‘s just storage of 
humidity/energy

� Hygric inertia can provide

� Passive indoor climate stabilization

� Reduction of extreme RH conditions

� Improvement of comfort conditions

� Reduction of humidification / dehumidification demand

� As energy use for heating/cooling and de-/humidification is significantly 
influenced in rooms with moisture buffering surfaces, the use of 
modeling tools capable of modeling the hygrothermal interaction 
between room and surrounding surfaces must be highly recommended!

Nineteenth Annual Building Science Symposium August 4, 2015

Kunzel/Antretter 166 of 263



© Fraunhofer IBP 

Auf Wissen bauen

Florian Antretter – August 4th 2015

Nineteenth Annual Westford Symposium on Building Science

Is hygric inertia (moisture buffering) 
comparable to thermal inertia?
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Auf Wissen bauen

Today’s challenges –
Renewable energy supply and intermittent operation
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Impact of technology progress on buildings
Development of energy efficiency requirements
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Impact of technology progress on buildings
From energy consumer to energy producer

From energy consumer to energy producer ?

electricity

gas

heat

thermal
storage

mobility

energy 
management
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Example for German Plus Energy House Projects
Effizienzhaus Plus
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Example for German Plus Energy House Projects
Effizienzhaus Plus – Results  of first year of operation

Challenge: Time-shift between energy production an consumption

Energy production

Energy consumption
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Energy supply of tomorrow
Increasing amount of renewables leads to fluctuating supply

Energy DemandConventional Energy

Renewable Energy Grid flexibility

0%

50%

100%

150%

E
n

e
rg

y
 P

ro
d

u
c
ti
o

n

Day 1 Day 2 Day 3 Day 4

Year 2000
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Energy Management for buildings: 

Save energy in times of low energy supply 

– consume and store when supply is high
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Energy storage in buildings
Thermal energy storage – seasonal storage capacity

central heating water
storage (20 000 l) 
in the staircase

ventilation 
systems with 
heat recovery

southern roof 
surface with 54m² 
solar collectors

hot water
storage tank

façades with exterior 
insulation

hot water tank 
for neighbing
houses

triple-glazed
window

radiator

hot water

Zero heat energy house with large water tank

Works, but is too expensive for wide-spread application
Location Berlin
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Storage

� Heat

� Electricity

Grid

�Electricity

Demand

� Heat

� Electricity

Production

� Heat

� Electricity

Storage capacity must respond to typical weather cycles that effect 

renewable electricity production (e.g. ≈ 10 days in Central Europe)

Energy storage in buildings
Short term energy storage
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Existing building stock in the city of tomorrow
Low efficiency requires large storage capacities
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Existing building stock in the city of tomorrow
Solution: Adapted building operation

Technology

Process Quality

Mold & damage
control conditions

Stand-by climate
e.g. night setback

Comfort
climate

demand controlled

12 °C

20 °C16 °C

Bed-

room
Living-

room

Bath

Guest-

room
Kitchen
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cold 
climate

hot & humid 
climate

Adapted building operation
First challenge (idle-mode): 
Damage prevention in intermittently operated spaces
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  Gemessene Temperatur:  22 °C
  Empfundene Temperatur: 20 °C

   Gemessene Temperatur:  18 °C
  Empfundene Temperatur: 20 °C

Thermal comfort depends on air & enclosure temperatures

Adapted building operation
Second challenge (Stand-by mode): 
Reaching comfort conditions as fast as possible 

Room air temperature [°C]

too warm

too cold

Air temp.:  22 °C
Sensed temp.:  20 °C

Air temp.: 18 °C 
Sensed temp.: 20 °C
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HVAC systems for adapted building operation
Radiation heat provides comfort conditions quickly

Radiation heat with high 
intensity or large surface
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Thermograph of chilled ceiling

HVAC systems for adapted building operation
Challenge: Fast and intensive radiative cooling 

Performance limits:
Water droplets due 

to overcooling !!
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HVAC systems for adapted building operation
Solution example: chilled water fall – cools and dehumidifies!
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HVAC systems for adapted building operation
Example: chilled water fall – cools and dehumidifies!

Freshness of chilled water fall provides 
comfortable conditions in hot and 
humid environments – Comfort Oasis

Source: c+p monotop wall
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Auf Wissen bauen

Florian Antretter – August 4th 2015

Nineteenth Annual Westford Symposium on Building Science

Targeting future challenges – Fluctuating 
building operation
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Outline

� Challenges due to renewable energy production

� Long term shift – using buildings as thermal storage

� Short term shift – Intermittent operation

� HVAC impacts
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Renewable Energy Production
Challenges

Nineteenth Annual Building Science Symposium August 4, 2015

Kunzel/Antretter 186 of 263



© Fraunhofer IBP

Renewable Energy Production

� Increasing renewable energy 
production

� Renewables are often not 
constant and harder to plan
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Prediction of Renewable Energy Production US

Source: EIA

Non constant renewables get
a higher share
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Day Profile of Electrical Energy Demand vs. Production

Source: https://str.llnl.gov

Simulated day profile of a 2020 California winter day

Daily cycle renewable energy
production requires short
term storage/demand shift
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2014/2015 Winter European Energy Exchange Prices

Christmas Time and 
lots of wind Hurricane Felix

Jan 2nd 2015 Typical climate patterns (~10 
days) require long term storage

E
n

e
rg

y
 P

ri
ce

 o
n

 E
E

G
 S

p
o

t 
M

a
rk

e
t 

[€
/M

W
h

]

Nineteenth Annual Building Science Symposium August 4, 2015

Kunzel/Antretter 190 of 263



© Fraunhofer IBP

Storing Excess Wind Energy in 
Buildings
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Project: Wind Heating 2.0

Source:
Fraunhofer IWES im Auftrag 
von Agora Energiewende

Idea:

� Use „excess elctrical
energy“ during periods
with high wind energy
production for heating
(as only heating
system)

Task:

� Bridge periods with
low renewable
production through
thermal energy storage
in buildings

Electricity Demand
Residual Demand
Photovoltaics
Offshore-Wind
Onshore-Wind
Hydro
Biomass and other
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Idea of Using the Building Structure

� Amount and 
distribution of 
thermal mass in 
building

� Insulation of 
interior 
components

� Additional water 
(or even PCM) 
storage

� Suitable systems 
(electrical direct, 
heat pumps, …)
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Modeling of Loaded Component

Panel Heating as 
Source in Component

Reinforced concrete

Sound insulation

Concrete screed

Flooring

Electrical Panel Heating

Additional Insulation 
below
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Building Model

� Apartment in a multi-family building

� 7 Zones

� Same conditions in apartment above and 
below

� Seperate inner load profiles per zone

� Ideal heating on 20 °C (68 F)

� Climate conditions: Germany (Holzkirchen)
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Deduction of Maximum Bridgeable Times

� Cumulated heating
energy demand

� Maximum take
from grid

= Area x Power per 
Area x Duration

= 98.5 m² x 200 
W/m² x 8 h

= 157.6 kWh

� Mark on y-axis

� Determination of
maximum times
that can be
bridged on x -axis
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Modeled Living Room Temperature

Starting with too high 
temperatures with
uninsulated
components

Too fast cooling of
uninsulated
components

Temperatures in an 
acceptable range over
heating period with
insulated loaded
components

Only 6 loading cycles
in Nov/Dec and 
Jan/Feb (~1,5 weeks)
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Influence of Building Thermal Envelope

Three Thermal Envelope Qualities:

� Mean (Uwall = 0,48 W/m²K, Uwindow = 1,3 W/m²K)

� High (Uwall = 0,25 W/m²K, Uwindow = 1,0 W/m²K)

� Very High (Uwall = 0,12 W/m²K, Uwindow = 0,8 W/m²K)

Variation of 
EIFS thickness
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Loading Cycles vs. Thermal Envelope Quality

Frequent loading
cycles with medium 
thermal envelope

Only 8 loading cycles
with Passive House 
like thermal envelope
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And the Loaded Components?

� High temperatures in component (around 50 °C (120 F))

� Heat flux into zones can be influenced by insulation thickness

� High thermal stress on materials

� High moisture flux toward zones on first loading cycles
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Further Options

� Thermally activated
components

� Hot water storage tanks

� PCM Storage

� Double insulated massive 
interior walls

� …

Nineteenth Annual Building Science Symposium August 4, 2015

Kunzel/Antretter 201 of 263



© Fraunhofer IBP

First Conclusions

� It is possible to bridge 8-10 days

� A wider indoor temperature range needs to be accepted

� Sufficient thermal storage needs to be present

� Information is required for loading/unloading control:

� thermal building performance

� predicted weather conditions

� current status of loaded components

� Thermal building enclosure defines the times to bridge

� Loaded internal components need to be insulated

� Combined systems that provide “passive” gains and some control
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Intermittent Building Operation
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What is Thermal Comfort?

Thermal Comfort

is that condition of mind that expresses satisfaction with 
the thermal environment.

ASHRAE Standard 55

The condition of thermal comfort

is sometimes defined as a state in which there are no 
driving impulses to correct the environment by 
behaviour.

Benzinger 1979 in Hensen 1990
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Comfort

Evaporation (~ 35%)

Radiation (~ 30%)

Convection (~ 30%)

Conduction (~ 5%)

Parameters:

� Air temperature

� Radiation 
temperature

� Air Humidity

� Air velocity

� Clothing

� Activity

How do we manage our heat 
balance?
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Current approach

� Blow in cold/warm air to
condition the space

� Surface conditions change
slower

� Air temperature needs to fix it

� Unconditioned space
� Cold/Warm Air and Surfaces
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Intermittent Heating/Cooling of a Space

� Condition the surfaces
� Low-e surface treatment
� Thin internal insulation of 

all surfaces
� Panel heating/cooling on 

exterior wall surface

� Unconditioned space
� Cold/Warm Air and Surfaces
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Operative Temperature for Thin Surface Layer

Very thin surface
insulation layer

No surface layer

2 mm surface layer

5 mm surface layer

� Operative 
temperature faster
in acceptable range

� Peak heating load is
lowered
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Using Hygric Inertia to Flaten
HVAC Demand
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Moisture removal capacity of standard unitary AC 
systems 

TIAX report 

D5168

High latent 

loads may 

cause high 

indoor RH

Critical 

threshold:  

SHR ≈ 0.55

SHR (sensible heat ratio) = sensible 

heat load / total heat load
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SHR in Apartment Building in July/August

� Ventilation: 0.6 ACH

� Set-Points: 25°C; 50 % RH

� Low Building Standard: U-wall = 1.2 W/(m²K), U-win = 2.7 W/(m²K), SHGC = 0.45

� High Building Standard: U-wall = 0.26 W/m²K, U-win = 1.3 W/(m²K), SHGC = 0.3

Improving the building standard 

may require AC system change 
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Moisture Buffering Effect on Daily RH Fluctuations

Moisture buffering capacity of the envelope dampens daily indoor RH 

cycles

Nineteenth Annual Building Science Symposium August 4, 2015

Kunzel/Antretter 212 of 263



© Fraunhofer IBP

Conclusions and Outlook
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Conclusions

� Fluctuating energy supply requires
new solutions

� Long term thermal energy storage in 
massive buildings is one option

� Use of thermal and hygric mass for
short term compensation
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Outlook

� In what cases is long term storage applicable/useful?

� Do I know how the building enclosure interacts with the systems?

� How do new operation modes influence durability?

� What new products/systems need to be developed/applied?

� How can I earn money on the balancing power market?

� Can we process all information from our „smart buildings“ to make them 
really smart (with what we know about users/use/damage/…)?

� How can we make our buildings „future proof“?
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Auf Wissen bauen

Florian Antretter – August 4th 2015

Nineteenth Annual Westford Symposium on Building Science

Targeting future challenges – Fluctuating 
building operation
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Auf Wissen bauen

Hartwig Künzel, Ralf Kilian, Stefan Bichlmair

How can Bavarian castles survive the 
rising tourist onslaught?

1
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Original HVAC designed for 700 vistors per day – currently up to 2000 v/d 

Introduction – New HVAC for the Sistine Chapel in Rome

2
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Introduction – New HVAC for the Sistine Chapel in Rome

Air flow capacity 15 m³/s (32,000 cfm) – Near-wall velocity < 0.5 m/s

20°C (68°F) < indoor temp. < 25°C (77°F)

50% < indoor RH < 60%
CO2 < 800 ppm

3
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Cathegory
Moisture

[g/h]
Heat
[W]

CO2

[g/h]

Adult person,
sitting, relaxed

43 101 30.3

Adult person,
sitting, working

59 120 36.3

Adult person,
middle activity

123 205 60.5

Introduction – Feasibility of a simpler approach

Visitors – heat and moisture production

1) Getting rid of visitors or reduce their number
2) Neutralize the impacts of visitors

4
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The King’s House on the Schachen

Altitude: 1.866 m in the Wetterstein mountain range

Climate: Extreme weather with cold winters and moderate summers

Use: Open to visitors during summer, closed during winter, unheated

Construction: Wooden framework construction in Swiss chalet-style

History: Built 1869 -1872 for King Ludwig II of Bavaria
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Location of the Schachen Mountain in Upper Bavaria

No cable car, but 4 h mountain hike >>> limited number of visitors

6
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The King’s House on the Schachen – Ground Floor 

7
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The Turkish Hall – Upper Floor

Materials: Painted wood, gilded wood, porcelain, metal, glass, feathers, 

textiles – cushions and carpets
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State of preservation of the furnishing

Warping of wall paperSmaller gilding defects

Overall, wall surfaces and furnishing in the Turkish hall are in good condition
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RH, temp. outdoors
RH, temp. indoors
(since Oct. 2006)

RH, temp. attic
RH, temp. ground floor
(since July 2007)

O

O

O

O

Climate measurements since summer 2006

10
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Climate
measurements
2006 – 2007
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Risk assessment of indoor climate induced degradation

One year

climate data

2006-2007

12
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Summary on the state of preservation

• Confirmation of the overall good state of preservation of the Turkish Hall

• No heating or ventilation system

• Indoor surface materials are buffering humidity fluctuations

• Stable indoor environment helps to preserve furnishing

⇒ many positive factors contribute to the

good state of preservation
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Impacts on the
indoor climate

� outdoor climate

� visitors / use

� ventilation / Infiltration

� thermal inertia

� moisture buffering

� (envelope, furnishing)

� moisture / heat sources

� solar gains
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Simulation of the Schachenhouse

15

WUFI Plus model
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Composition of the building envelope
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Boundary conditions

Outdoor climate

- temperature & RH measured at 

balcony oriented to the North

- rain, wind speed & direction from 

Zugspitze meteorological station

- solar radiation from 

Hohenpeissenberg station

Assumed air change rate 0.25 h-1

Small moisture production (limited number of

visitors because of mountain location, access

only possible from may until september)
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Simulation – results
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Influence of moisture buffering on RH

measured data simulation without 
moisture buffering
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measured data simulation with 
moisture buffering

20

Influence of moisture buffering on RH
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Simulated change of use – heating to 8°C

measured data simulated change

21
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Simulated change of use – 800 visitors per day

measured data simulated change

22
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Installation of a Weather Station on the Schachen

November, 19th 2009
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Infiltration measurements – Blower Door (failed)
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Passive sampling for measurements of air exchange rate with the outdoor 
air and between the floors

© Fraunhofer IBP

Source: Fluid Tracergas A / B; 
Constant Tracergasemission
by PENTIAQ, Sweden

© Fraunhofer IBP

Sampler: Absorbent 
Material; Mass Flow into the 
Absorber.

Tracer 

Gas

Infiltration measurements
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Results of the measurements of air exchange rate

© Fraunhofer IBP

Distribution of measure equipment and results of the tracer gas measurement for each 

zone, Turkish Hall n = 0.34 1/h, average whole building n = 0.41 1/h
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Surface materials in the Turkish Hall incl. interior 
furnishing

Textile

Gilded Wood

Painted Wood     

Paper

Glass

Wood

other
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Determination of material properties
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Improved Hygrothermal Building Simulation

© Fraunhofer IBP

1.10.2009 bis 30.9.2010. 

Indoor climate in Turkish hall

– comparison between measurements and improved simulation

RH Temperature
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© Bayerische Schlösser- und Seenverwaltung BSV

Front view of Linderhof Palace

© Bayerische Schlösser- und Seenverwaltung BSV

Rear view of Linderhof Palace

Linderhof Palace, Bavaria

30
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Building history

© Bayerische Schlösser- und Seenverwaltung BSV

Bedchamber of Linderhof Palace

© Bayerische Schlösser- und Seenverwaltung BSV / 

Firma Focus

Bedchamber of Linderhof Palace

31
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© Grundriss Bayerische Schlösser- und Seenverwaltung BSV

Natural ventilation and guided tour route

Natural ventilation via windows and visitor tours

Visitor Numbers

400,000 to 500,000 per year

3000 Visitors and more per day

(50% more than Sistine Chapel)

32
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Indoor climate Parade Bedchamber

33

December 1st 2009 to November 31st 2010
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Indoor environment in the Parade Bedchamber in 2010 –
Conservation risk assessment and visitor comfort  

Hours of sultriness

Steadman (red line) 

� Sultriness hours 

in total 1295 h

� Sultriness during 

opening hours

630 h

34
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© Fraunhofer IBP

WUFI Plus simulation model

© Fraunhofer IBP

Simulation model - Parade Bedchamber

© Bayerische Schlösserverwaltung BSV

Rear view Linderhof Palace
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© Fraunhofer IBP

Hygrothermal simulation of the bedchamber

© Fraunhofer IBP

Hygrothermal simulation of the room climate of the 
bedchamber

36
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© Fraunhofer IBP

Input data

© Grundriss: Bayerische Schlösserverwaltung BSV

Parade Bedchamber and adjacant climates
01.12.2009 bis 01.12.2010
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© Fraunhofer IBP 38

Comparison simulation vs. measurements

© Fraunhofer IBP

Scenario of absolute humidity with vistiors and without visitors,
period from 12/2009 to 12/2010.

Scenario with / without Visitors 
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© Fraunhofer IBP

Comparison measurements vs. simulation

39
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© Fraunhofer IBP

Climate concept – Stage 1a and 1b

40

Reasons for a new climate
control concept at Linderhof

� Mean RH above 70 % (Parade 

Bedroom, north side)

� Large short term fluctuation of RH

� Degradation problems visible
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© Fraunhofer IBP 41

Climate control unit

Features of HVAC-system:
Supply air 1200 m³/h

Sorption dehumidification

Heating (frost-free)

Cooling (sorption enthalpy)

Earth tunnel
� pre-cooling

� pre-heating

� dehumidification ?
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© Fraunhofer IBP 42

Climate control unit
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© Fraunhofer IBP 43

Neuschwanstein Castle

5000 Visitors and more per day
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© Fraunhofer IBP

Neuschwanstein Castle, Throne Hall

44
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© Fraunhofer IBP 45
45
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© Fraunhofer IBP

Challenge: installing and removing sensors on precious 
interior finishes

46

Reversible glue: Cyclododecane (evaporates after sensor removal)
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© Fraunhofer IBP 47

New preservation project: Pompeii

www.pompeii-sustainable-

preservation-project.org/
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