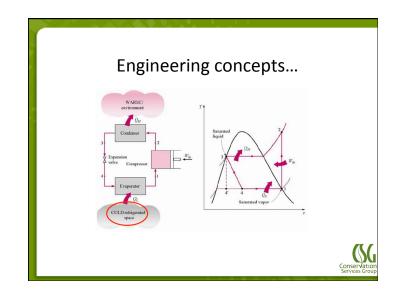
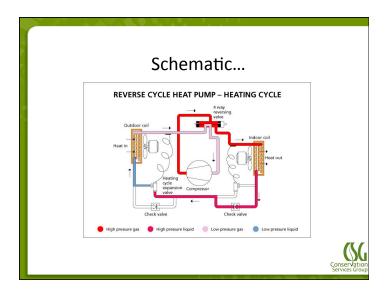
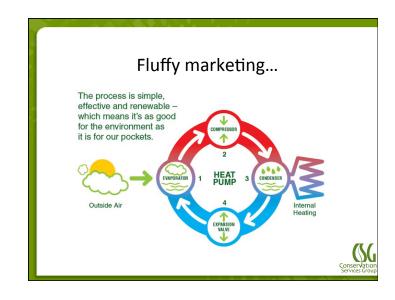
The Quirkiness of Heat Pumps

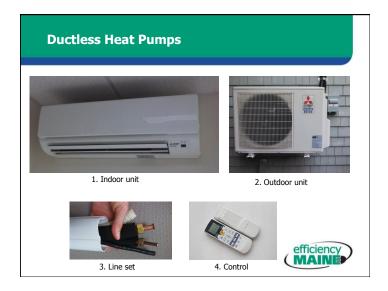
Bruce Harley
Technical Director, Conservation Services Group

Westford 2014


Outline


- Heat pumps (briefly) explained
- My own heat pumps
 - Measurements and results
- Design and Application insights
- Some program experience




Heat pumps explained

Residential Air Source Heat Pumps

- 1980s lots of ASHPs in northern climates
 - Duct leaks, air flow/charge problems
 - "blowing cold air" complaints
- Electric resistance heat compensates
 - Leading to very low average system efficiency
- People *believe* ASHPs don't work in cold climates *because of the climate*

Harley 2 of 13

Ductless Split Heat Pumps

- 40+ years of mass-production
 - Originally single-point cooling
- Steady advances:
 - System size wider range
 - Flexibility (heating cycle, multi-head, mini duct, etc)
 - Efficiency increase variable speed "inverter drive"
 - Climate (optimizing for cold weather heating)
- No built-in electric resistance backup heat

DHP Residential Use Cases

- Offset existing heating source
 - Oil, LP, Electric resistance
 - 1-2 zones -through- complete replacement
- Exclusively heat low-load homes
 - Deep retrofit, new near/net zero
- Add HVAC to addition or new zone

The Quirkiness of Buying a DHP

• 2 Local contractors I tried to get bids from:

"It won't heat your house in Vermont... maybe if you were in Texas or Oklahoma."

"You should really get a 'geothermal' system...
my dad and I installed lots of heat pumps in
the '80s and they don't work that well..."

Old Myths Die Hard

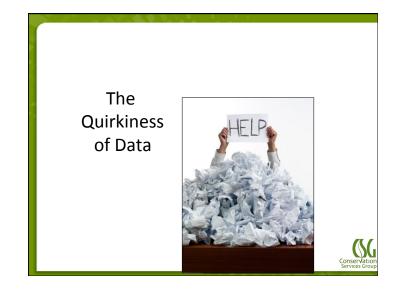
- Installer's advice: "Shut it off at -10C"
 - Unit is rated at least to -20C, albeit at lower capacity

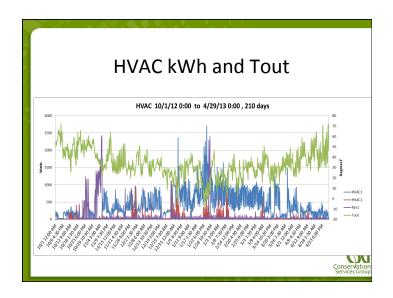
Harley 3 of 13

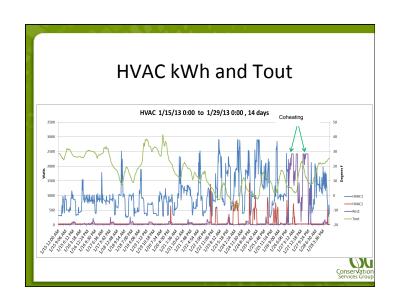
The Quirkiness of Measuring

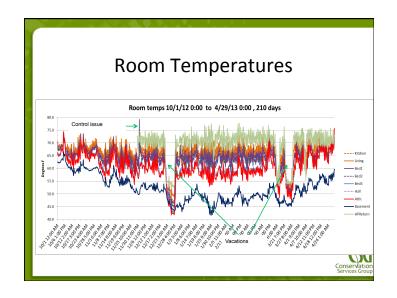
- Summary:
 - DHP Installation: Stamford, VT July, 2012
 - Modestly efficient, 2400 SF house
 - 2 units, 3 zones
 - Monitored 9/2012-4/2014,
 - Co-heat test: resistance heat, 14 days

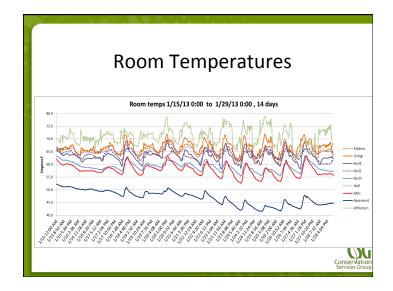
Harley 4 of 13



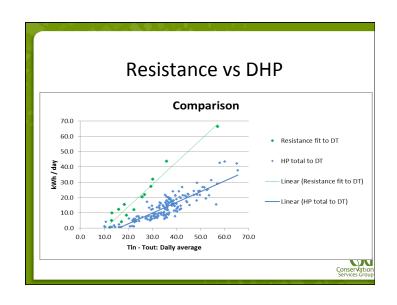

Methodology, Discrepancies

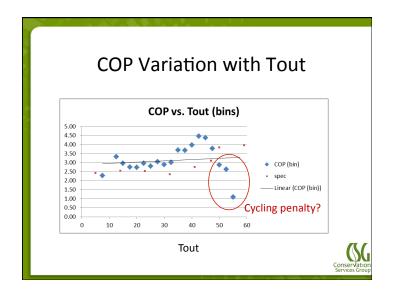

- Adjustment for power factor—inverter(!)
- Removed days away, incl. recovery time
- Daily average Tout, not instantaneous
- Solar gain contributed to heating
 - Coheat test included some sunny days
 - Solar has most influence in mildest weather

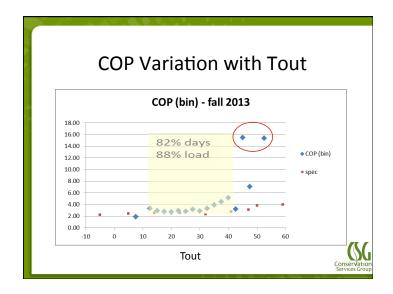




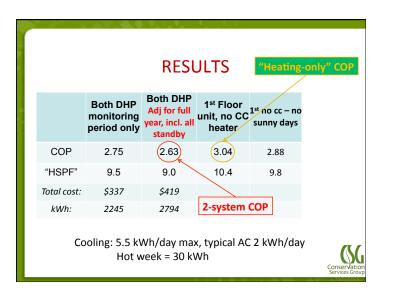
Harley 5 of 13







Harley 6 of 13



Harley 7 of 13

Some conclusions

- Efficiency in mild weather is highly dependent on user settings
 - But little impact on annual cost/energy
- Direct solar gain affects mild-weather efficiency
 - Again, little impact on annual results

Projected (bin analysis) vs. Actual

	Projected	Actual
Load	7740 kWh	7358 kWh
Consumption	3067 kWh	2245 (2794) kWh
Cost	\$460	\$337 (\$419)
СОР	2.5	2.6 – 2.8

Conservati

Insights

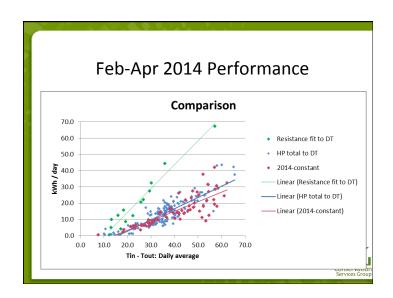
- Crankcase Heater: ~0.5 kWh/day max
 - Only <~34F & compressor off
 - ~120 kWh annually (mostly for 2nd system) small
- Fan Speed "Low" is quieter
 - Preferred during our first winter
- "Auto" fan boosts capacity
 - Important in colder weather
- Don't use auto-changeover (H/C) setting

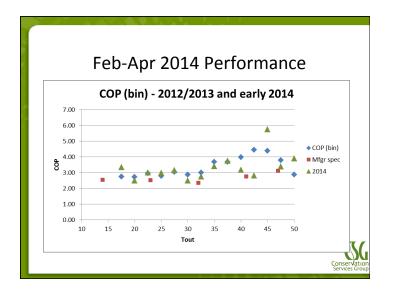
Harley 8 of 13

The Quirkiness of Controls

- Setup is NOT intuitive
 - 2F increments, w/ "energy saving" mode ...
- Ensure communication with remote
 - Wired unit eliminates issue (2015 wifi option?)
- Remote isn't thermostat! (most brands)
 - Wired control, remote sensor or compensate

More control quirks (installer controls)


- Air handlers (Fujitsu) runs fan to sample cabinet temperature periodically
 - Run system if >6F from setpoint, overriding remote temp sensing setting
- Need to override setting that reverts to factory default on power outage (!)


The Quirkiness of Setbacks

- For DHP, temperature setbacks don't save
 - Deep setback = long recovery, in high speed mode
 - Early morning recovery = lowest outdoor temps
 - Both of these = least efficient operation
- Better to "set it and forget it"
 - Use modest setback for > several days away

Harley 9 of 13

Feb-Apr 2014 Performance

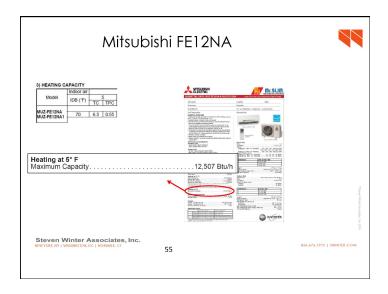
- Excluded "away" times (comparable analysis)
- Tout average was colder (26.4 vs 33.0) during Feb-Apr 2014 period than winter 2012-2013
- Comparison to resistance heat kWh test using temperature setbacks makes these COP estimates more conservative
 - DHP was actually more efficient when set at a constant temperature than with a setback

Design thoughts: retrofit

- 1st floor unit primary heating for 2-story house
 - 2nd floor unit great for cooling 2-story house
 - Ducts help—3 very low load rooms
- Most savings from first heating unit
 - Sometimes 2-3 heads for cut-up floor plans
- Any more will be for comfort, convenience
- Balance multi-head vs. multiple outdoor units
- What are client's priorities/commitment?

More Thoughts

- In heating climate: indoor unit low on wall
 - Window sill height provides balance between heating and cooling performance in cold climate
- Retrofit: you do need to operate the heat pump to get savings
 - Set DHP warmer than backup heat!




Harley 10 of 13

Design tips:

- Don't use HSPF "as-is" to estimate or even compare performance
 - Adjust for climate using bin analysis for actual equipment and application
 - Be careful about what manufacturers specs you use:

Design tips:

- Focus on the application
 - Sole heating source: cold weather performance/ capacity is critical
 - Retrofit to offset oil/LP/resistance heat: overall performance matters more
- Conventional concepts of "right-sizing" may not be relevant for some uses
- Avoid drain-pan heaters

Harley 11 of 13

Thoughts

- A DHP doesn't interfere with future deep energy efficiency improvements
 - No 'stranded investment'
- Some benefits aren't limited to "ductless"...
 - Inverter drive variable speed, cold climate becoming available in central split systems
 - These may be better suited to replace central split systems...
 - If ducts are OK, or accessible and can be fixed

~3,000 Ductless Heat Pumps in Maine

Slides courtesy of Andy Meyer – Program Manager CSG – program implementer

Two Maine DHP programs:

- 1. All Income Pilot:
 - a. 1,000 DHPs
 - b. \$600 rebate, on-bill financing
 - **C.** HSPF ≥ 10.0
 - d. Average install cost: \$3,230
 - e. 91% definitely recommend
- 2. Affordable housing
 - 1. Electric space heat
 - 2. Free to customer
 - 3. 1894 Units, avg. cost \$2,073

ME Low Income DHP evaluation (The quirkiness of heat pump users)

- Gross heating savings pre/post = 37%
- Comparison-adjusted heat saved = 40%
- Realization rate 70% on heat pump projects
 - Based on pre-evaluation assumption of 75% offset of pre-existing resistance heat
 - 50% replacement more realistic for these units
- Small loads (avg 5400 kWh heating)
 - Large variation in savings between units

Low Income Program Billing Analysis

1.Methodology

- a. First year actual vs. prior year
- b. 249 upgraded units
- C. 58 non-upgraded (controls)
- d. Normalized results for weather and usage

2.Findings

- **a.** Pre-upgrade heat load: 5,399 kWh/year
- b. Net savings: 25 54%
- C. Simple payback: ~7 years
 - i. \$0.14/kWh
 - ii. \$2,073 install cost

Thanks!

Bruce Harley,
Technical Director, Conservation Services Group

bruce.harley@csgrp.com

802.694.1719

Low Income Tenant Interviews

- 1.24 in-home interviews
- 2.25% of tenants did not use heat pump at all
- 3. Only 45% of tenants heated "most of apartment" with heat pump*
- 4. Behavior influences
 - a. Subsidized utilities (open windows, high setpoints, unused units)
 - b. Limited occupant education

* Consistent with Bonneville Power 2012 study showing only
43-75% of electric resistance heat offset "Ductless Heat Pump Retrofits in
Multifamily and Small Commercial Buildings"

**Consistent with Bonneville Power 2012 study showing only
43-75% of electric resistance heat offset "Ductless Heat Pump Retrofits in
MAINEY

MAINEY

**Consistent with Bonneville Power 2012 study showing only
43-75% of electric resistance heat offset "Ductless Heat Pump Retrofits in
MAINEY**

MAINEY

**MAINEY*

Harley 13 of 13